Microstructure and high temperature mechanical properties of inertia friction welding joint of K447A + GH4169
-
摘要: 针对新型镍基铸造高温合金K447A和变形高温合金GH4169异种材料惯性摩擦焊工艺进行研究,对热处理后接头微观组织和高温力学性能进行试验分析,结果表明,K447A和GH4169惯性摩擦焊接头飞边成形良好,飞边根部无明显缺陷存在;接头焊缝区组织为完全再结晶组织,焊缝组织中的γ''和γ'相热处理后重新弥散析出,K447A侧仅形成了3 ~ 10 μm宽的再结晶区;通过接头高温力学性能试验,结果表明,接头高温拉伸和高温扭转性能断裂位置在K447A母材侧,400 ℃高周疲劳强度达到355 MPa. 在最大应力720 MPa,试验温度400 ℃条件下低周疲劳寿命均超过30 000次.Abstract: The dissimilar materials of Ni-base cast superalloy K447A and Ni-base wrought superalloy GH4169 were welded by Inertia Friction Welding (IFW). The microstructure and high temperature mechanical properties of the joints were studied after heat treatment. The results show that good flash can be formed after IFW and no clear defects were found at the root of the flash. Fine recrystallization zone was formed in the weld zone (WZ) and fine γ'' phase and γ' phase were precipitated in the WZ after heat processing. The recrystallization zone width of the K447A side is between 3μm and 10μm. The high temperature tensile strength and torsional strength of GH4169 + K447A IFW joints were equal to K447A base metal. The high cycle fatigue strength of the joint is 355 MPa at the temperature of 400 °C. Under the condition of 400 °C and 720 MPa, the low cycle fatigue life of all the joint samples exceeded 30 000 times.
-
-
表 1 K447A + GH4169惯性摩擦焊接头拉伸性能
Table 1 Mechanical property of K447A + GH4169 IFW joints
温度T/℃ 抗拉强度Rm/MPa 屈服强度Rp0.2/MPa 断面收缩率A(%) 断后伸长率Z(%) 400 1 014.5 960 2.5 4.4 650 1 009.4 877.6 3.3 4.5 表 2 K447A + GH4169惯性摩擦焊接头低周疲劳性能
Table 2 Low cycle fatigue property of IFW joints
编号 最大应力σ/MPa 寿命N(次) 1 720 30 000 780 30 000 840 9 992 2 720 30 000 780 30 000 840 27 088 3 720 30 000 780 30 000 840 6 741 4 720 30 000 780 30 000 840 30 000 900 8 546 5 720 30 000 780 30 000 840 3 008 6 720 30 000 780 30 000 840 30 000 900 18 843 7 720 30 000 780 30 000 840 30 000 900 11 309 8 720 30 000 780 30 000 840 30 000 900 9 934 9 720 34 825 10 720 150 661 -
[1] 李爱兰, 汤 鑫, 曹腊梅, 等. 热等静压温度对K447A高温合金显微组织及性能的影响[J]. 航空材料学报, 2012, 32(2): 13 − 19. doi: 10.3969/j.issn.1005-5053.2012.2.003 Li Ailan, Tang Xin, Cao Lamei, et al. Effects of HIP temperature on microstructure and mechanical properties of K447A superalloy[J]. Journal of Aeronautical Materials, 2012, 32(2): 13 − 19. doi: 10.3969/j.issn.1005-5053.2012.2.003
[2] 李爱兰, 汤 鑫, 曹腊梅, 等. 定向/细晶双性能整体叶盘材料K447合金的显微组织研究[J]. 材料工程, 2009(supplement 1): 73 − 76. Li Ailan, Tang Xin, Cao Lamei, et al. Microstructure study of directionally solidified/equiaxed double properties casting K447 alloy for integral turbine wheel[J]. Journal of Materials Engineering, 2009(supplement 1): 73 − 76.
[3] 师昌绪, 陆 达. 中国高温合金四十年[M]. 北京: 中国科学技术出版社, 1996. [4] 姬书得, 刘建光, 张利国, 等. 材料流动对连续驱动摩擦焊飞边形成的影响[J]. 焊接学报, 2013, 34(4): 31 − 34. Ji Shude, Liu Jianguang, Zhang Liguo, et al. Effect of material flow on flash formation during continuous driven friction welding[J]. Transactions of the China Welding Institute, 2013, 34(4): 31 − 34.
[5] 张春波, 周 军, 赵玉珊, 等. 不同热处理状态AMS6308钢惯性摩擦焊接头组织及力学性能[J]. 焊接学报, 2012, 36(7): 21 − 24. Zhang Chunbo, Zhou Jun, Zhao Yushan, et al. Microstructure and mechanical properties of inertia friction welding joint of AMS6308 steel at different heat treatment state[J]. Transactions of the China Welding Institute, 2012, 36(7): 21 − 24.
[6] Li W Y, Wang F F. Modeling of continuous drive friction welding of mild steel[J]. Materials Science and Enginnering A, 2011, 528(18): 5921 − 5926. doi: 10.1016/j.msea.2011.04.001
[7] Turner R P, Perumal B, Lu Y, et al. Modeling of the heat-affected and thermomechanically affected zones in a Ti-6Al-4V inertia friction weld[J]. Metallurgical and Materials Transactions B, 2019, 50(20): 1000 − 1011.
[8] Tung D J, Mahaffey D W, Senkov O N, et al. Transient behavior of torque and process efficiency during inertia friction welding[J]. Science & Technology of Welding & Joing, 2019, 24(2): 136 − 147.
[9] 杨 军, 楼松年, 严隽民, 等. GH4169高温合金惯性摩擦焊接头晶粒分布特征[J]. 焊接学报, 2001, 22(3): 31 − 35. Yang Jun, Lou Songnian, Yan Junmin, et al. Grain distribution properties of superal loy GH4169 inertia friction welded joint[J]. Transactions of the China Welding Institute, 2001, 22(3): 31 − 35.
[10] 梁 海, 刘效方. GH4169合金惯性摩擦焊参数、组织和强化机制研究[J]. 航空材料学报, 1997, 14(4): 41 − 47. Liang Hai, Liu Xiaofang. Study on parameters microstructure and strengthening mechanism in inertia friction welding of alloy GH4169[J]. Journal of aeronautical materials, 1997, 14(4): 41 − 47.
[11] Gao Ming. Preferential coarsening of γ" precipitates in inconel 718 during creep[J]. Metallurgy and Material Transaction, 1996, 27(11): 391 − 398.
[12] Sandararaman M. Some aspects of the precipitation of metastable intermetallic phases in Inconel 718[J]. Metallurgy Transaction A, 1992, 23A(7): 2015 − 2028.
-
期刊类型引用(3)
1. 王颖,高胜,戴哲. 基于CNN-Transformer混合网络的焊缝激光条纹分割. 中国激光. 2024(24): 113-124 . 百度学术
2. 乐猛,张华,叶艳辉,尚志军,赵琪. 膜式壁焊缝图像处理及其识别方法. 热加工工艺. 2021(01): 107-111 . 百度学术
3. 张世宽,吴清潇,林智远. 焊缝图像中结构光条纹的检测与分割. 光学学报. 2021(05): 88-96 . 百度学术
其他类型引用(1)