高级检索

电子束熔丝成形Ti-6Al-3Nb-2Zr-Mo合金的组织与力学性能

张帅锋, 蒋鹏, 于冰冰, 巩水利, 杨光

张帅锋, 蒋鹏, 于冰冰, 巩水利, 杨光. 电子束熔丝成形Ti-6Al-3Nb-2Zr-Mo合金的组织与力学性能[J]. 焊接学报, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273
引用本文: 张帅锋, 蒋鹏, 于冰冰, 巩水利, 杨光. 电子束熔丝成形Ti-6Al-3Nb-2Zr-Mo合金的组织与力学性能[J]. 焊接学报, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273
ZHANG Shuaifeng, JIANG Peng, YU Bingbing, GONG Shuili, YANG Guang. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273
Citation: ZHANG Shuaifeng, JIANG Peng, YU Bingbing, GONG Shuili, YANG Guang. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273

电子束熔丝成形Ti-6Al-3Nb-2Zr-Mo合金的组织与力学性能

基金项目: 国家重点研发计划项目(2017YFB1103100)
详细信息
    作者简介:

    张帅锋,男,1989年出生,硕士. 主要从事钛合金焊接、增材制造技术研究. Email:zhsf@tju.edu.cn

Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing

  • 摘要: 试验采用电子束熔丝快速成形方法(EBRM)制备了Ti-6Al-3Nb-2Zr-Mo合金试样,研究了EBRM Ti6321合金化学成分、显微组织、力学性能及冲击韧性. 结果表明,该合金在熔丝成形中Al元素烧损1.0%左右,且合金内部没有元素偏析. EBRM Ti6321合金显微组织为沿沉积高度方向生长、晶贯穿多个沉积层的粗大柱状晶,柱状晶内部以α片层为主. EBRM Ti6321合金x向和z向的室温抗拉强度各项异性系数为2.6%,断裂方式均为韧性断裂. x向和z向冲击韧性均不低于80 J,各向异性系数为3.1%;冲击断口有大量的韧窝,为典型的韧性断裂.
    Abstract: The Chemical compositions, microstructure, mechanical properties, toughness of Ti6321 alloy made by electron beam rapid manufacturing (EBRM) were studied. The 1% of Al in the solder wire was burned during the manufacturing process, and no element segregation was found. The as-built microstructures exhibit large columnar grains, which grew epitaxially along the height direction of deposits through many deposition layers. The columnar grain is mainly composed of α lamellae. As a result, the anisotropic coefficient of tensile strength is 2. 6%. Dimple are observed on fractured tensile specimens in both X and Z directions. The impact toughness of X and Z direction is not less than 80J, and the anisotropic coefficient of toughness is 2.6%. The impact fracture is typical ductile fracture, which consists of a large number of dimples.
  • 图  1   试样取样位置示意图

    Figure  1.   Layout of the specimens on the build sample

    图  2   EBRM Ti6321样品各元素的分布

    Figure  2.   Elemental mapping images of EBRM Ti6321 sample

    图  3   不同位置的EBRM Ti6321合金的金相组织形貌

    Figure  3.   Optical microstructure of EBRM Ti6321 samples

    图  4   不同位置的EBRM Ti6321合金的微观组织形貌

    Figure  4.   Optical microstructure of EBRM Ti6321

    图  5   不同位置的TEM像

    Figure  5.   TEM images of different regions of samples

    图  6   不同方向上的拉伸断口形貌

    Figure  6.   SEM micrographs of tensile fracture surfaces

    图  7   不同方向上的冲击断口形貌

    Figure  7.   SEM micrographs of Charpy impact fracture surfaces

    表  1   EBRM Ti6321 合金拉伸性能

    Table  1   Tensile properties of EBRM Ti6321 samples

    类别 抗拉强度
    Rm/MPa
    屈服强度
    Rp0.2/MPa
    断后伸长率
    A(%)
    断后收缩率
    Z(%)
    水平方向 748.7 657.7 13.3 46
    竖直方向 729 642 12.7 44
    各向异性 2.6% 2.3% 4.5% 4.3%
    下载: 导出CSV

    表  2   EBRM Ti6321室温冲击韧性

    Table  2   Impact toughness of EBRM Ti6321 samples

    类别 冲击吸收能量 AKV/J
    水平 83.3
    竖直 86
    各向异性 3.1%
    下载: 导出CSV
  • [1] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    Lu Bingheng, Li Dichen. Development of the additive manufacturing(3D printing) technology[J]. Machine Building and Automation, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    [2] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials’ fundamental issues of laseradditive manufacturing for high-performance large metalliccomponents[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.

    [3] 陈国庆, 树 西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214

    Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214

    [4] 王 哲, 张 钧, 李述军, 等. 电子束熔化逐层成形法制备Ti6Al4V合金的组织与力学性能[J]. 中国有色金属学报, 2013, 23(z1): 20 − 23.

    Wang Zhe, Zhang Jun, Li Shujun, et al. Microstructures and mechanical properties of Ti6Al4V alloy fabricated by electron beam melting[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(z1): 20 − 23.

    [5] 巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 空制造技术, 2013, 433(13): 66 − 71. doi: 10.3969/j.issn.1671-833X.2013.13.012

    Gong Shuili, Suo Hongbo, Li Huaixue. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, 433(13): 66 − 71. doi: 10.3969/j.issn.1671-833X.2013.13.012

    [6] 黄志涛, 巩水利, 锁红波, 等. 电子束熔丝成形的TC4钛合金的组织与性能研究[J]. 钛工业进展, 2016, 33(5): 33 − 36.

    Huang Zhitao, Gong Shuili, Suo Hongbo, et al. Microstructure and properties of TC4 titanium alloy manufactured by electron beam rapid manufacturing[J]. Titanium Industry Progress, 2016, 33(5): 33 − 36.

    [7]

    Bush R W, Brice C A. Elevated temperature characterization of electron beam free form fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er[J]. Materials Science and Engineering: A, 2012, 554(5): 12 − 21.

    [8]

    Suo Hongbo, Chen Zheyuan, Liu Jianrong, et al. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 0780 − 0785. doi: 10.1016/S1875-5372(14)60083-7

    [9]

    Xie Yong, Ming Gao, Wang Fude, et al. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J]. Materials Science and Engineering A, 2018, 709: 265 − 269. doi: 10.1016/j.msea.2017.10.064

    [10]

    Zhai Yuwei, Ladosda, Browne J, et al. Fatigue crack growth behavior and microstructural mechanismsin Ti-6Al-4V manufactured by laser engineered net shaping[J]. International Journal of Fatigue, 2016, 93: 51 − 63. doi: 10.1016/j.ijfatigue.2016.08.009

    [11] 周长平, 林 枫, 杨 浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017, 39(2): 80 − 87.

    Zhou Changping, Lin Feng, Yang Hao, et al. Application progress of additive manufacturing technology in shipbuilding field[J]. Ship Engineering, 2017, 39(2): 80 − 87.

    [12] 吴笑风, 岳 宏, 石 瑶, 等. 我国船舶产业智能制造及其标准化现状与趋势[J]. 舰船科学技术, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001

    Wu Xiaofeng, Yue Hong, Shi Yao, et al. Current status and development trend of smart manufacturing technology and standardization of China's shipbuilding industry[J]. Ship Science and Technology, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001

    [13]

    Shi Xuezhi, Ma Shuyuan, Liu Changmeng, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: microstructure and mechanical properties[J]. Materials Science and Engineering A, 2017, 684: 196 − 204. doi: 10.1016/j.msea.2016.12.065

    [14]

    Thijs L, Verhaeghe F, Craefhs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Material, 2010, 58: 3303 − 3312. doi: 10.1016/j.actamat.2010.02.004

    [15]

    Carrolli B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated withdirected energy deposition additive manufacturing[J]. Acta Material, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054

    [16]

    Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review[J]. Materials & Design, 2018, 139: 565 − 586.

    [17] 邵 晖, 赵永庆, 葛 鹏, 等. 不同组织类型对TC21合金强-塑性的影响[J]. 稀有金属材料与工程, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039

    Shao Hui, Zhao Yongqing, Ge Peng, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039

  • 期刊类型引用(0)

    其他类型引用(1)

图(7)  /  表(2)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  14
  • PDF下载量:  44
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-09-15
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回