Aluminum alloy thick plate laser scanning wire filling welding porosity suppression
-
摘要: 为减少大厚板5A06铝合金激光焊接缺陷,提高焊接过程稳定性,采用激光光束以一定方式运动的扫描焊接的新焊接方法,研究了激光束不同的运动轨迹、幅度、频率对铝合金激光深熔焊接焊缝气孔率的影响,并在焊接坡口设计优化基础上应用窄间隙扫描激光填丝焊接技术进行130 mm厚5A06铝合金焊接试验. 结果表明,采用圆形扫描方式,当激光光束的扫描幅度大于1 mm,扫描频率选择最高频率附近时,能够大幅降低焊缝气孔率;采用窄间隙激光扫描填丝的焊接方法,获得了焊缝平均气孔率1%,无侧壁未熔合、层间未熔合、裂纹等焊接缺陷的130 mm厚5A06铝合金优质焊接接头.Abstract: To reduce big plate of 5A06 aluminum alloy laser welding defects, which enhances the stability of welding process, using a laser beam in a certain way of scanning new welding method, welding laser beam was studied different trajectories, amplitude, frequency of deep penetration laser welding aluminum alloy weld porosity, and the welding groove design optimization based on the application of narrow gap scanning laser wire filling welding technology for 130 mm thick 5A06 aluminum alloy welding test. The results show that when the scanning amplitude of the laser beam is greater than 1 mm and the scanning frequency is near the highest frequency, the porosity of the weld can be greatly reduced. The welding method of narrow gap laser scanning wire filling was adopted to obtain the high-quality welding joints of 130 mm 5A06 aluminum alloy with average porosity of 1%, no side wall non-fusion, interlayer non-fusion, crack and other welding defects.
-
Keywords:
- laser scanning welding /
- aluminum alloy /
- thick plate /
- narrow gap
-
0. 序 言
高强铝合金在应用中常需进行焊接,采用传统熔焊方法焊接时容易产生较大的焊件变形、气孔、热应力和液化裂纹等缺陷[1-3],影响了其应用前景. Liu等人[4]研究发现7075-T6铝合金TIG焊接头出现明显软化,热影响区软化最严重. 常丽艳、李正等人[5-6]研究发现7075铝合金激光-MIG复合焊高热输入时气孔率小,低热输入时气孔尺寸较大,气孔集中在焊缝中心,表面较少,中心部位疏松组织和气孔较多,降低了抗拉强度. Li等人[7]研究了7075-T651铝合金的搅拌摩擦焊,发现组分颗粒的重新分布和η′相的析出导致了熔核区的裂纹萌生能低,热影响区的裂纹萌生能低是由于η相的存在和组分颗粒的重新分布,η相的存在也导致接头抗拉强度降低.
与其他熔焊方法相比,变极性等离子弧焊在铝合金的焊接中具有自身的优势[8-9]. 研究也表明在焊接电流中植入脉冲,有利于细化晶粒、减小气孔及改善接头的性能[10-12].文中采用脉冲变极性等离子弧(pulse variable polarity plasma arc, PVPPA) 焊接10 mm厚7075铝合金,通过调整焊接电流和离子气流量来控制焊缝形貌,研究两种参数的变化对焊缝成形系数的影响,确定了较优的焊接参数并测试力学性能,为高强铝合金PVPPAW在生产中的应用作出了探索.
1. 试验方法
试验材料为7075-T651铝合金板材,尺寸为140 mm × 70 mm × 10 mm,焊丝为
$\phi $ 1.2 mm ER5183铝镁合金. 试验采用VPPA-300型焊接电源和PMW-300型等离子弧焊枪,保护气体和离子气体为99.9%的氩气. 焊前先清理待焊面. 焊接电流的选择如表1所示,离子气体流量选择1.8,2.0,2.2和2.4 L/min四组参数,焊接速度为0.15 m/min,送丝速度为2.0 m/min,保护气体流量为15 L/min,钨极内缩量为3 mm,正反极性时间比为21∶4. 试验中首先进行堆焊,将接头的截面打磨、抛光和腐蚀后,对比焊缝形状参数得出较优的工艺参数及焊缝成形系数,然后实施对焊,优化出最优参数,对焊缝形状参数和力学性能进行检测. 力学性能取样需去除余高. 采用Vert.A1 Axio Imager型光学显微镜观察接头显微组织.表 1 焊接电流的选择Table 1. Choice of welding currents组别 正极性电流In/A 反极性电流Ip/A A 160 200 B 180 220 C 200 240 D 220 260 E 240 280 2. 试验结果与分析
2.1 焊接电流对焊缝成形的影响
在PVPPAW过程中,焊接电流需根据板厚或熔透要求来选择. 电流较小时不能形成小孔,较大时又会因小孔过大造成熔池金属坠落. 试验采用穿孔立焊工艺,研究了不同离子气流量下焊接电流的变化对焊缝成形规律的影响.
2.1.1 离子气体流量为1.8 L/min
图1为不同焊接电流下焊缝截面形貌. 不同焊接电流对应的焊缝形状参数如表2所示. 结合图1和表2可知,当离子气流量为1.8 L/min时,随着焊接电流的增大焊缝逐渐由未穿孔向穿孔转变. 焊接电流为160 A/200 A时未能穿孔. 200 A/240 A能够穿孔,焊缝正面成形较好,但背面金属的流动性差,成形不佳. 220 A/260 A时焊缝正面成形良好,背面成形向圆弧形过渡. 240 A/280 A时焊缝的正面成形良好,但背面熔宽变宽. 如图1e所示.
表 2 不同焊接电流的焊缝形状参数(1.8 L/min)Table 2. Weld shape parameters of different welding currents组别 实际熔深H/mm 正面熔宽 Wz/mm 焊缝成形系数 Wz/H 是否焊透 正面质量 背面质量 1 4.6 9.3 2.02 否 差 — 2 6.2 9.7 1.56 否 差 — 3 10 11.1 1.11 是 良好 较差 4 10 11.9 1.19 是 良好 良好 5 10 12.5 1.25 是 良好 较好 图2为不同焊接电流对焊缝形状参数的影响. 由图2可知,随着焊接电流的增大,焊缝正面熔宽逐渐增大,焊缝成形系数先减小后增大. 焊接电流为160 A/200 A时焊缝成形系数为2.02,200 A/240 A时减小为1.11. 焊接电流进一步增加,焊缝成形系数逐渐增大,220 A/260 A时为1.19,此时焊缝成形良好. 240 A/280 A时为1.25,焊缝背面熔宽明显变宽.
2.1.2 离子气体流量为2.0 L/min
图3为不同焊接电流下焊缝截面形貌. 不同焊接电流对应的焊缝形状参数如表3所示. 结合图3和表3可知,当离子气体流量为2.0 L/min时,焊缝成形的规律与1.8 L/min时一致,焊接电流为200 A/240 A时可以实现穿孔,此时焊缝正面成形良好,背面成形较差. 随着电流的增大,焊缝背面成形向圆弧过渡,240 A/280 A时焊缝正面成形良好,背面熔宽也明显变宽,成形变差. 如图3e所示.
表 3 不同焊接电流的焊缝形状参数(2.0 L/min)Table 3. Weld shape parameters of different welding currents组别 实际熔深H/mm 正面熔宽 Wz/mm 焊缝成形系数 Wz/H 是否焊透 正面质量 背面质量 1 5.1 9.7 1.9 否 差 — 2 7.8 10.2 1.31 否 差 — 3 10 11.0 1.1 是 良好 较差 4 10 11.7 1.17 是 良好 良好 5 10 12.4 1.24 是 良好 较好 图4为不同焊接电流对焊缝形状参数的影响. 由图4可知,随着焊接电流增大,焊缝正面熔宽由9.7 mm增大为12.4 mm,焊缝成形系数仍为先减小后增大. 焊接电流为160 A/200 A时焊缝成形系数为1.9,220 A/260 A时减小为1.17,此时焊缝成形良好,240 A/280 A时为1.24,焊缝背面成形变差.
2.1.3 离子气体流量为2.2 L/min
图5为不同焊接电流下焊缝截面形貌. 不同焊接电流对应的焊缝形状参数如表4所示. 结合图5和表4可知,当离子气体流量为2.2 L/min,焊接电流为较小的160 A/200 A时仍未穿孔,如图5a所示. 180 A/220 A可实现穿孔,但背面出现咬边,随着焊接电流的增大,焊缝背面成形向圆弧过渡. 240 A/280 A时焊缝的背面熔宽明显变宽并出现回吸现象,如图5e所示.
表 4 不同焊接电流的焊缝形状参数(2.2 L/min)Table 4. Weld shape parameters of different welding currents组别 实际熔深H/mm 正面熔宽Wz/mm 焊缝成形系数 Wz/H 是否焊透 正面质量 背面质量 1 5.7 9.8 1.72 否 差 — 2 10 10.4 1.04 是 差 差 3 10 10.9 1.09 是 良好 良好 4 10 11.6 1.16 是 良好 良好 5 10 12.2 1.22 是 良好 差 图6为不同焊接电流对焊缝形状参数的影响. 由图6可知,随着焊接电流增大,焊缝正面熔宽逐渐增大,焊接电流为160 A/200 A时焊缝成形系数为1.72,此时仍未能穿孔. 180 A/220 A时减小为1.04,此时能够穿孔. 220 A/260 A时增大为1.16,焊缝成形较佳. 240 A/280 A时为1.22,背面成形变差.
2.1.4 离子气体流量为2.4 L/min
图7为不同焊接电流下焊缝截面形貌. 不同焊接电流对应的焊缝形状参数如表5所示. 结合图7和表5可知,当离子气体流量为2.4 L/min,焊接电流为180 A/220 A时可实现穿孔,但由于热量不足且离子气体流量过大造成切割现象. 220 A/260 A时焊缝正面、背面成形良好,240 A/280 A时焊缝的背面熔宽过大且出现回吸现象,如图7e所示.
表 5 不同焊接电流的焊缝形状参数(2.4 L/min)Table 5. Weld shape parameters of different welding currents组别 实际熔深H/mm 正面熔宽Wz/mm 焊缝成形系数 Wz/H 是否焊透 正面质量 背面质量 1 6.7 9.9 1.48 否 差 — 2 10 10.1 1.01 是 差 差 3 10 10.7 1.07 是 良好 良好 4 10 11.5 1.15 是 良好 良好 5 10 12.2 1.22 是 良好 差 图8为不同焊接电流对焊缝形状参数的影响. 由图8可知,随着焊接电流增大,焊缝正面熔宽由9.9 mm增加到12.2 mm. 焊接电流为160 A/200 A时焊缝成形系数为1.48,此时未穿孔,180 A/220 A时为1.01,220 A/260 A时增大为1.15,焊缝成形良好. 240 A/280 A时为1.22,焊缝背面成形变差.
2.2 焊接电流和离子气体流量对焊缝成形系数的影响
图9为不同焊接电流及离子气体流量对焊缝成形系数的影响. 由图9可知,当离子气体流量一定时,随着焊接电流的增加,焊缝成形系数呈先减小后增大的规律性变化. 离子气体流量为1.8 L/min,焊接电流为200 A/240 A时才能穿孔且正面成形较好,背面成形稍差,焊缝成形系数为1.11. 240 A/280 A时焊缝正面、背面成形较好,焊缝成形系数为1.25. 当离子气体流量增大到2.0 L/min时,焊接电流为160 A/200 A和180 A/220 A时焊缝未能成形,200 A/240 A时才能成形,此时的焊缝成形系数为1.1. 电流继续增大后焊缝成形质量逐渐变好. 当离子气体流量为2.2 L/min和2.4 L/min,焊接电流为220 A/260 A时焊缝成形良好,240 A/ 280 A时焊缝出现“回吸”现象,背面成形又变差.
当焊接电流一定时,随着离子气体流量的增大,焊缝成形系数逐渐减小. 焊接电流为160 A/200 A时,由于热输入不足造成四组离子气体流量下均未穿孔. 200 A/240 A时,四种离子气体流量条件下均能穿孔,但1.8 L/min时焊缝背面成形较差,如图1c所示. 随着离子气体流量增加,焊缝背面成形向圆弧形过渡. 焊接电流继续增大,焊缝成形系数逐渐增大,焊接电流为240 A/280 A,离子气体流量为2.2 L/min时焊缝背面出现“回吸”现象,背面成形变差. 离子气体流量继续增大后“回吸”现象依然存在.
由此可知,采用PVPPA焊接7075铝合金,未穿孔时,焊缝成形系数与焊接电流和离子气体流量两者成反比;穿孔后焊缝成形系数与焊接电流成正比,与离子气体流量成反比. 当热输入达到形成稳定穿孔熔池所需的热量值后,熔池上作用的各项力则可达到平衡状态,穿孔熔池即能保持其稳定性,此时离子气体流量可以在一定的范围内变化. 相比于离子气体流量,焊接电流对焊缝成形的影响更大. 综合焊缝形貌及焊缝成形系数,得出10 mm厚7075铝合金PVPPAW较佳的焊缝成形系数区间为1.1 ~ 1.3.
2.3 较佳焊接参数的优化
综合焊接电流及离子气体流量的变化对10 mm厚7075铝合金PVPPAW焊缝成形的影响规律,优化出堆焊的较佳参数范围为正/反极性电流220 A/260 A ~ 240 A/280 A,离子气体流量1.8 L/min ~ 2.2 L/min. 在此工艺基础上优化出对焊的较佳焊接电流为250 A/290 A,离子气体流量为2.0 L/min. 该参数下焊件的焊后形貌如图10所示,焊缝成形良好,有均匀的鱼鳞纹,无明显的缺陷产生. 此时焊缝成形系数为1.25.
2.4 优化参数后焊缝的组织和性能
2.4.1 焊接接头的显微组织
图11为7075铝合金PVPPAW较佳参数的接头金相照片. 由图11可知,接头由母材区(A)、热影响区(B)、焊缝区(C)三部分组成. 母材区为典型的轧制组织,热影响区为轧制组织和部分等轴晶,焊缝中心为较粗大的树枝晶. 这与铝合金在焊接过程中的受热状态和自身的物理特性密切相关,PVPPAW能量密度高,焊接速度快,焊缝中部温度梯度小,且长时间处于热量输入的中心,高温时间较长,晶粒长大时间充裕,所以焊缝中心为粗大的树枝晶组织. 而铝合金热导率大,冷却速度快,母材的方向是散热最快的方向,由于散热的作用造成热影响区温度升高,达到合金的再结晶温度,轧制组织发生再结晶形成了部分等轴晶. 母材由于未受到加热作用,其组织未发生明显变化.
2.4.2 焊接接头的力学性能
表6为7075铝合金母材和焊接接头的拉伸性能. 母材的抗拉强度为589.2 MPa,屈服强度为523.3 MPa,焊接接头的抗拉强度为397.9 MPa,屈服强度为332.6 MPa,接头的抗拉强度达到了母材强度的67.5%.
表 6 母材与焊接接头拉伸性能Table 6. Tensile properties of base metal and welded joint材料 抗拉强度Rm/MPa 屈服强度ReL/MPa 断裂处 7075母材 589.2 523.3 母材 焊接接头 397.9 332.6 焊缝 3. 结 论
(1)采用PVPPAW对7075铝合金中厚板进行焊接,焊缝成形系数随着焊接电流的增大先减小后增大,随着离子气流量的增大逐渐减小.
(2) 10 mm厚7075铝合金PVPPAW较佳的焊缝成形系数区间为1.1 ~ 1.3. 与离子气流量相比,焊接电流对焊缝成形的影响更大.
(3) 7075铝合金PVPPAW接头抗拉强度为397.9 MPa,达母材强度的67.5%,焊接质量较好.
-
表 1 试验材料化学成分(质量分数,%)
Table 1 Chemical composition of the material
材料 Cu Si Fe Ti Zn Mn Mg Cr Al 母材5A06 0.1 0.4 0.4 0.15 0.25 0.5 6.0 — 余量 焊丝ER5356 0.1 0.25 0.4 0.15 0.25 0.1 5.0 0.03 余量 表 2 扫描类工艺参数
Table 2 Scanning process parameters
扫描方式 扫描幅度 d/mm 扫描频率 f/Hz 圆形扫描 1 ~ 1.5 100 ~ 150 表 3 非扫描类工艺参数
Table 3 Laser without scanning process parameters
激光功率 P/kW 焊接速度v/(m·min−1) 送丝速度 vf/(m·min−1) 6 0.8 ~ 1 7.5 ~ 9 -
[1] 宫建锋. 铝合金厚板窄间隙双焦点激光焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2018. [2] 毛育青, 江周明, 柯黎明, 等. 铝合金厚板搅拌摩擦焊焊缝金属流动行为研究进展[J]. 精密成形工程, 2018, 10(5): 1 − 15. doi: 10.3969/j.issn.1674-6457.2018.05.001 Mao Yuqing, Jiang Zhouming, Ke Liming, et al. Research progress on metal flow behavior of friction stir welding seam for aluminum alloy thick plate[J]. Journal of Netshape Forming Engineering, 2018, 10(5): 1 − 15. doi: 10.3969/j.issn.1674-6457.2018.05.001
[3] Zhu Liang, Zheng Shaoxian, Chen J ianhong, et al. Development of ultra-narrow gap welding with constrained arc by flux band[J]. China Welding, 2006, 15(2): 44 − 49.
[4] 张 林. 7A52铝合金厚板激光-MIG复合焊接工艺研究[D]. 南京: 南京理工大学硕士学位论文, 2018. [5] 唐 卓. 船用厚板高功率激光焊接工艺适应性研究[D]. 上海: 上海交通大学博士学位论文, 2008. [6] 鲍亮亮, 王 勇, 韩 涛, 等. 40 海洋平台焊接技术及发展趋势[J]. 焊接, 2019(1): 27 − 36. Bao Liangliang,Wang Yong,Han Tao,et al. Welding technology and development trend of offshore platform[J]. Welding & Joining, 2019(1): 27 − 36.
[7] 黄海艇. 窄间隙GMAW焊枪设计及立焊工艺特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [8] Jokinen T, Kujanpaa V B L L. Multi-pass Nd: yag laser welding of thick section austenitic stainless steel[C]//Proceedings of Laser Inst America, Orlando, USA, 2001: 438 – 447.
[9] 郭鸿鹏. 铝合金中厚板窄间隙激光焊接技术研究[D]. 南京: 南京理工大学硕士学位论文, 2016. [10] 周立涛. 6061铝合金大功率固体激光扫描焊接气孔抑制工艺研究[D].机械科学研究院哈尔滨焊接研究所硕士学位论文, 2014. [11] 雷正龙, 李 颖, 陈彦宾, 等. 双光束激光填丝焊工艺对铝合金焊接气孔率的影响[J]. 焊接学报, 2013, 34(2): 40 − 44. Lei Zhenglong, Li Ying, Chen Yanbin, et al. Effect of process parameters on porosity formation ratio in dual-beam laser welding of aluminum alloys with filler wire[J]. Transactions of the China Welding Institution, 2013, 34(2): 40 − 44.
[12] 赵 琳, 张旭东, 陈武柱,等. 光束摆动法减小激光焊接气孔倾向[J]. 焊接学报, 2004, 25(1): 29 − 32. Zhao Lin, Zhang Xudong, Chen Wuzhu, et al. Repression of porosity with beam weaving laser welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 29 − 32.
[13] 王文华. 铝合金振荡扫描激光焊接数值模拟[D]. 武汉: 华中科技大学硕士学位论文, 2016. -
期刊类型引用(7)
1. 刘今越,李文秀,贾晓辉,冯重阳. 基于场景点云重建的移动焊接机器人作业轨迹提取方法. 计算机集成制造系统. 2024(07): 2381-2388 . 百度学术
2. 赵大兴,丁晟,肖迪,程兆. 激光焊缝跟踪系统设计与应用. 机床与液压. 2023(02): 105-111 . 百度学术
3. 叶汉民,刘英志,程小辉. 基于生成对抗网络的V形焊缝图像修复算法. 河南科技大学学报(自然科学版). 2022(04): 46-54+6 . 百度学术
4. 谭钦,周勇,李卫东,胡楷雄. 基于响应面法的MIG焊工艺参数优化. 热加工工艺. 2022(19): 103-108+113 . 百度学术
5. 张世宽,吴清潇,林智远. 焊缝图像中结构光条纹的检测与分割. 光学学报. 2021(05): 88-96 . 百度学术
6. 马增强,钱荣威,许丹丹,杜巍. 线结构光焊接图像去噪方法. 焊接学报. 2021(02): 8-15+97-98 . 本站查看
7. 张弓,脱帅华,曹学鹏,侯至丞,杨文林,徐征,包翔宇. 焊接机器人焊缝跟踪技术的现状与发展趋势. 科学技术与工程. 2021(10): 3868-3876 . 百度学术
其他类型引用(15)