高级检索

铝合金厚板激光扫描填丝焊接气孔抑制

邹吉鹏, 李连胜, 宫建锋, 黄瑞生, 李玉斌

邹吉鹏, 李连胜, 宫建锋, 黄瑞生, 李玉斌. 铝合金厚板激光扫描填丝焊接气孔抑制[J]. 焊接学报, 2019, 40(10): 43-47, 66. DOI: 10.12073/j.hjxb.2019400261
引用本文: 邹吉鹏, 李连胜, 宫建锋, 黄瑞生, 李玉斌. 铝合金厚板激光扫描填丝焊接气孔抑制[J]. 焊接学报, 2019, 40(10): 43-47, 66. DOI: 10.12073/j.hjxb.2019400261
ZOU Jipeng, LI Liansheng, GONG Jianfeng, HUANG Ruisheng, LI Yubin. Aluminum alloy thick plate laser scanning wire filling welding porosity suppression[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 43-47, 66. DOI: 10.12073/j.hjxb.2019400261
Citation: ZOU Jipeng, LI Liansheng, GONG Jianfeng, HUANG Ruisheng, LI Yubin. Aluminum alloy thick plate laser scanning wire filling welding porosity suppression[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 43-47, 66. DOI: 10.12073/j.hjxb.2019400261

铝合金厚板激光扫描填丝焊接气孔抑制

基金项目: 国家重点研发计划项目(2016YFB1102100);黑龙江省资助项目(GX18A007)
详细信息
    作者简介:

    邹吉鹏,男,1992年出生,硕士.主要从事激光焊接技术的科研工作. Email:hwi_zjp@163.com

    通讯作者:

    黄瑞生,男,高级工程师. Email:huangrs8@163.com

Aluminum alloy thick plate laser scanning wire filling welding porosity suppression

  • 摘要: 为减少大厚板5A06铝合金激光焊接缺陷,提高焊接过程稳定性,采用激光光束以一定方式运动的扫描焊接的新焊接方法,研究了激光束不同的运动轨迹、幅度、频率对铝合金激光深熔焊接焊缝气孔率的影响,并在焊接坡口设计优化基础上应用窄间隙扫描激光填丝焊接技术进行130 mm厚5A06铝合金焊接试验. 结果表明,采用圆形扫描方式,当激光光束的扫描幅度大于1 mm,扫描频率选择最高频率附近时,能够大幅降低焊缝气孔率;采用窄间隙激光扫描填丝的焊接方法,获得了焊缝平均气孔率1%,无侧壁未熔合、层间未熔合、裂纹等焊接缺陷的130 mm厚5A06铝合金优质焊接接头.
    Abstract: To reduce big plate of 5A06 aluminum alloy laser welding defects, which enhances the stability of welding process, using a laser beam in a certain way of scanning new welding method, welding laser beam was studied different trajectories, amplitude, frequency of deep penetration laser welding aluminum alloy weld porosity, and the welding groove design optimization based on the application of narrow gap scanning laser wire filling welding technology for 130 mm thick 5A06 aluminum alloy welding test. The results show that when the scanning amplitude of the laser beam is greater than 1 mm and the scanning frequency is near the highest frequency, the porosity of the weld can be greatly reduced. The welding method of narrow gap laser scanning wire filling was adopted to obtain the high-quality welding joints of 130 mm 5A06 aluminum alloy with average porosity of 1%, no side wall non-fusion, interlayer non-fusion, crack and other welding defects.
  • 随着我国经济的快速发展及高性能铝合金的不断研发,凭借自身优良的物理性能,较小的比重、较高的比强度及良好的导电导热性、延展性,在船舶制造、海洋工程、核电设备等领域对高性能铝合金厚板结构的需求越来越大,相应的对厚板的焊接技术要求也越来越高[1-4]. 对于厚板的焊接,窄间隙焊接技术已经广泛应用在工业生产中[5-7],而激光焊接由于其具有热输入小、热影响区小、焊接变形小等优点,日本焊接界将窄间隙同激光焊并称为21世纪现代工业生产中最适合厚板焊接的两种技术[8-9].

    对于铝合金厚板的激光焊接来说,气孔问题是铝合金焊接的常见问题,也是最难解决的问题之一. 文献[10-11]中认为铝合金激光焊接极易产生工艺型气孔的主要原因是因为焊接过程中匙孔底部易被剧烈运动的液态熔池金属所封闭及等离子体波动时会卷入保护气体,又由于铝合金较高的冷却速率,这些被封闭在液态金属中的气泡很难逸出,最终以气孔的形式留于焊缝中. 赵琳等人在焊接钢时采用激光光束摆动的方式来控制气孔,通过采用聚焦光束摆动的方式并调节光束摆动频率等参数可获得极低气孔率的焊接接头[12]. 高频振荡扫描激光束能够改变焊接温度场分布和熔池流动状态,进而改善焊缝成形,消除冶金缺陷,提高焊接质量[13]. 扫描焊接在解决钢的焊接缺陷国内外已有较多研究,但是将激光扫描焊接技术应用到铝合金的气孔抑制方面的研究还很少.

    为了克服铝合金焊接的气孔问题,文中采用了激光扫描填丝焊接方法,以5A06铝合金为研究对象,重点讨论在窄间隙填丝焊接条件下,激光扫描填丝焊接工艺参数对气孔率的影响规律.

    试验所用的母材为开有一定坡口角度的150 mm × 150 mm × 18 mm,与300 mm × 300 mm × 130 mm厚5A06铝合金,焊前状态为H112,为了补偿在焊接过程铝合金中镁元素的烧损,选用含镁元素含量较高的ER5356焊丝与母材等成分匹配,焊丝直径选择1.2 mm,母材及焊丝的化学成分见表1.

    表  1  试验材料化学成分(质量分数,%)
    Table  1.  Chemical composition of the material
    材料 Cu Si Fe Ti Zn Mn Mg Cr Al
    母材5A06 0.1 0.4 0.4 0.15 0.25 0.5 6.0 余量
    焊丝ER5356 0.1 0.25 0.4 0.15 0.25 0.1 5.0 0.03 余量
    下载: 导出CSV 
    | 显示表格

    铝合金激光扫描焊接试验在激光扫描焊接工作站进行,激光扫描焊接试验工作站主要包括以下几部分组成:Trumpf公司生产的Trudisk6002 disk型激光器,激光波长1 070 nm,额定最大输出功率为6 000 W;激光枪枪头为Trumpf公司生产的可编程聚焦镜组,聚焦镜焦距为550 mm,最大扫描速度为1 000 mm/min;MOTOMAN机器人;福尼斯送丝机.

    焊接方法如图1所示,填充焊丝以前送丝方式进入焊接区,通过激光加热及熔池热辐射共同作用下熔化,激光束以一定运动轨迹、运动速度、运动半径与竖直平面呈15°角方向作用到焊缝,保护气体为99.9%的纯氩气. 试验均采用未熔透的焊接方式.

    图  1  窄间隙扫描激光填丝焊接示意图
    Figure  1.  Narrow gap scanning laser wire filling welding

    试验首先研究了扫描方式(圆形扫描轨迹、垂直轨迹、平行轨迹)、扫描幅度、扫描频率对单层单道激光填丝焊缝气孔率的影响规律,扫描轨迹的定义方式为激光束运动方向与焊接方向的相对位置关系,四种光束运动特征如图2所示. 然后根据所得到的单层单道焊缝最佳工艺区间,选取合理的窄间隙坡口形式完成130 mm铝合金大厚板焊接.

    图  2  激光束扫描运动方式
    Figure  2.  Laser beam scanning mode

    试验中固定不变参数为激光功率6 kW,焊接速度1 m/min,送丝速度9 m/min,保护气体为氩气,保护气体流量为15 ~ 25 L/min,激光束焦点位于焊接区表面.

    不同扫描轨迹直接表现为激光束对熔池不同热输入方式,不同激光输入方式对熔池搅拌作用不同,液态熔池的稳定性及金属液流动方式必定有所差别. 试验主要研究了四种不同激光束运动轨迹对焊接气孔率的影响规律. 图3反映的是四种不同激光运动模式下铝合金填丝焊接气孔RT图.

    图  3  不同扫描轨迹下焊缝X射线图片
    Figure  3.  X-Ray under different Scanning trajectories

    可以看到常规单激光填丝焊接及光束以垂直或平行方式运动时,焊缝中所形成的气孔尺寸较大,数量也较多,而当激光束以圆形方式扫描时,能大幅度降低焊缝的气孔率,对铝合金工艺型气孔有极好的抑制作用. 这说明当激光束以圆形方式运动起来后,能极大地稳定窄间隙内的熔池流动,使激光焊接产生的匙孔闭合率大大降低.

    图4为四种扫描轨迹焊缝气孔率的定量对比. 常规单激光焊接和光束以垂直轨迹扫描的焊缝气孔率较高,达到了13%以上;当激光束的运动方向采用与焊接方向平行时,能达到一定的抑制气孔的作用,但效果并不是十分明显,气孔率达到了9.6%;当激光束以圆形轨迹扫描运动后,焊缝的气孔率急剧降低,仅仅为0.59%,不但气孔的数量上大幅减少,焊道单个气孔的尺寸相比于其他扫描轨迹也有大幅降低.

    图  4  不同扫描轨迹对填丝焊缝气孔率的影响
    Figure  4.  Effect of different scanning trajectories on porosity of welds

    综上所述,当激光束以圆形的方式扫描时焊缝气孔率非常低,因此后续的试验均在圆形轨迹的条件下进行研究.

    扫描幅度决定了热源的作用面积,扫描幅度越大,激光束作用面积越大,能量越分散,从而对焊缝的气孔率产生影响. 为了考虑单一变量对试验结果的影响,激光束的扫描频率定为100 Hz.

    图5给出了扫描频率在100 Hz条件下,扫描幅度从0.4 ~ 1.5 mm变化时焊缝气孔率的X射线图,图6为气孔率随扫描幅度的变化规律,可以看出气孔率的变化与扫描幅度成反比趋势,气孔率随着扫描幅度的增加而逐渐降低,值得注意的,扫描幅度在1 mm时气孔率发生突变,气孔率急剧减少,当扫描幅度达到1.2 mm时已经几乎没有工艺型气孔的产生.

    图  5  不同扫描幅度下焊缝X射线图片
    Figure  5.  X-Ray under different Scanning amplitudes
    图  6  不同扫描幅度对填丝焊缝气孔率的影响
    Figure  6.  Effect of different scanning amplitudes on porosity of welds

    扫描频率决定激光束对熔池的搅拌速度,频率越快,搅拌速度越高. 同样的,扫描频率也会极大的影响了焊接过程中熔池、匙孔和等离子体的稳定性,进而对焊缝的气孔率造成较大影响.

    当扫描幅度在1 mm以下时,随着扫描频率增加气孔变化幅度不大,都维持在一个较高水平,选取具有代表性的扫描幅度0.6 mm,如图7所示,扫描频率变化区间为50 ~ 300 Hz,气孔率维持在12%左右,如图8;而当扫描幅度在1 mm以上时,随着扫描频率的增加气孔率逐渐减小,选取具有代表性的扫描幅度1.2 mm,如图9所示,扫描频率变化区间为50 ~ 200 Hz,在最高频率附近时几乎不产生工艺型气孔,如图8所示.

    图  7  幅度0.6 mm,不同扫描频率下焊缝X射线图片
    Figure  7.  Scanning amplitudes 0.6 mm, X-Ray under different Scanning frequencies
    图  8  不同扫描频率对填丝焊缝气孔率的影响
    Figure  8.  Effect of different frequencies amplitudes on porosity of welds
    图  9  幅度1.2 mm时不同扫描频率下焊缝X射线图片
    Figure  9.  Scanning amplitudes 1.2 mm, X-Ray under different Scanning frequencies

    根据以上总结单道单层填丝焊焊接参数扫描方式、扫描幅度、扫描频率对焊缝的气孔率的影响规律,选取完成130 mm大厚板焊接优化后的工艺参数如表2表3所示.

    表  2  扫描类工艺参数
    Table  2.  Scanning process parameters
    扫描方式 扫描幅度 d/mm 扫描频率 f/Hz
    圆形扫描 1 ~ 1.5 100 ~ 150
    下载: 导出CSV 
    | 显示表格
    表  3  非扫描类工艺参数
    Table  3.  Laser without scanning process parameters
    激光功率 P/kW 焊接速度v/(m·min−1) 送丝速度 vf/(m·min−1)
    6 0.8 ~ 1 7.5 ~ 9
    下载: 导出CSV 
    | 显示表格

    图10为优化后的单层单道激光扫描填丝焊接焊缝成形、气孔率与常规单激光焊缝的对比. 常规激光焊的焊缝表面成形不良,平整度极差,焊接过程极不稳定,与常规激光焊相比摆动焊接焊缝成形有较大改善,成形光滑均匀. 这是因为当激光束在窄间隙内以圆形运动时,熔融金属在窄间隙内的流动方式由无序变为有序,这种有序的熔池运动方式大大降低了由于匙孔蒸汽反冲压力不能克服由重力引起的流体静压力及由金属流动产生的流体静压力和表面张力而导致的匙孔湮灭的可能,匙孔及熔池的动态行为又与金属蒸汽/等离子体相互作用并动态关联着,因此圆形扫描轨迹在稳定匙孔的同时也增强了等离子体的稳定性,整个熔池处于一种稳定的动态平衡.

    图  10  单层单道工艺优化与常规单激光对比
    Figure  10.  Comparison of optimized technology

    根据前期大量的试验研究,我们最终选择的130 mm厚板坡口尺寸如图11所示,窄间隙底部宽度3 mm,钝边15 mm,单边坡口角度为2度.

    图  11  坡口尺寸
    Figure  11.  Groove size

    对130 mm铝合金大厚板采用优化后的单层单道激光扫描填丝工艺进行多层填充焊接,图12为焊接后所得到的焊缝接头宏观形貌,除却打底层,试验共计45层完成填充,且均为单道多层填充,每层焊后都需要用特制的钢刷清理焊道表面的氧化物黑灰,并用酒精擦拭干净,在确保焊道表面没有明显杂质后才能进行下一层填充焊接,每层焊后都需要进行特殊的去应力处理,最终焊后变形角度为1.5度,每层填充熔深约为2.8 mm,焊缝宽度约为6 mm,焊缝形状整齐,稳定性很好,无明显焊接缺陷. 对铝合金焊后试件沿焊缝厚度方向进行9 MeV的ICT探伤,对焊缝宽度方向共分8层进行检测,得到每个纵截面的CT图像,如图13所示. 对每个纵截面的CT图像进行气孔率计算,结果显示平均气孔率为1%,无侧壁及层间未熔合、裂纹等焊接缺陷.

    图  12  130 mm厚焊缝横截面图
    Figure  12.  130 mm weld cross section
    图  13  纵截面探伤结果
    Figure  13.  Inspection results of longitudinal section

    (1)当扫描激光焊的激光束运动轨迹设计为圆形时,能有效抑制铝合金焊缝中工艺型气孔产生.

    (2)扫描幅度的增大能显著降低焊缝的气孔率,当扫描幅度大于1 mm,扫描频率选取相应幅度对应的最高频率时,能够很好抑制工艺型气孔产生.

    (3)在国内首次完成了130 mm厚5A06铝合金大厚板激光扫描填丝优质焊接,焊缝形状整齐,稳定性较好,沿焊缝厚度方向进行9MeV-ICT探伤,探伤结果显示焊缝平均气孔率为1%,无侧壁及层间未熔合、裂纹等焊接缺陷.

  • 图  1   窄间隙扫描激光填丝焊接示意图

    Figure  1.   Narrow gap scanning laser wire filling welding

    图  2   激光束扫描运动方式

    Figure  2.   Laser beam scanning mode

    图  3   不同扫描轨迹下焊缝X射线图片

    Figure  3.   X-Ray under different Scanning trajectories

    图  4   不同扫描轨迹对填丝焊缝气孔率的影响

    Figure  4.   Effect of different scanning trajectories on porosity of welds

    图  5   不同扫描幅度下焊缝X射线图片

    Figure  5.   X-Ray under different Scanning amplitudes

    图  6   不同扫描幅度对填丝焊缝气孔率的影响

    Figure  6.   Effect of different scanning amplitudes on porosity of welds

    图  7   幅度0.6 mm,不同扫描频率下焊缝X射线图片

    Figure  7.   Scanning amplitudes 0.6 mm, X-Ray under different Scanning frequencies

    图  8   不同扫描频率对填丝焊缝气孔率的影响

    Figure  8.   Effect of different frequencies amplitudes on porosity of welds

    图  9   幅度1.2 mm时不同扫描频率下焊缝X射线图片

    Figure  9.   Scanning amplitudes 1.2 mm, X-Ray under different Scanning frequencies

    图  10   单层单道工艺优化与常规单激光对比

    Figure  10.   Comparison of optimized technology

    图  11   坡口尺寸

    Figure  11.   Groove size

    图  12   130 mm厚焊缝横截面图

    Figure  12.   130 mm weld cross section

    图  13   纵截面探伤结果

    Figure  13.   Inspection results of longitudinal section

    表  1   试验材料化学成分(质量分数,%)

    Table  1   Chemical composition of the material

    材料 Cu Si Fe Ti Zn Mn Mg Cr Al
    母材5A06 0.1 0.4 0.4 0.15 0.25 0.5 6.0 余量
    焊丝ER5356 0.1 0.25 0.4 0.15 0.25 0.1 5.0 0.03 余量
    下载: 导出CSV

    表  2   扫描类工艺参数

    Table  2   Scanning process parameters

    扫描方式 扫描幅度 d/mm 扫描频率 f/Hz
    圆形扫描 1 ~ 1.5 100 ~ 150
    下载: 导出CSV

    表  3   非扫描类工艺参数

    Table  3   Laser without scanning process parameters

    激光功率 P/kW 焊接速度v/(m·min−1) 送丝速度 vf/(m·min−1)
    6 0.8 ~ 1 7.5 ~ 9
    下载: 导出CSV
  • [1] 宫建锋. 铝合金厚板窄间隙双焦点激光焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2018.
    [2] 毛育青, 江周明, 柯黎明, 等. 铝合金厚板搅拌摩擦焊焊缝金属流动行为研究进展[J]. 精密成形工程, 2018, 10(5): 1 − 15. doi: 10.3969/j.issn.1674-6457.2018.05.001

    Mao Yuqing, Jiang Zhouming, Ke Liming, et al. Research progress on metal flow behavior of friction stir welding seam for aluminum alloy thick plate[J]. Journal of Netshape Forming Engineering, 2018, 10(5): 1 − 15. doi: 10.3969/j.issn.1674-6457.2018.05.001

    [3]

    Zhu Liang, Zheng Shaoxian, Chen J ianhong, et al. Development of ultra-narrow gap welding with constrained arc by flux band[J]. China Welding, 2006, 15(2): 44 − 49.

    [4] 张 林. 7A52铝合金厚板激光-MIG复合焊接工艺研究[D]. 南京: 南京理工大学硕士学位论文, 2018.
    [5] 唐 卓. 船用厚板高功率激光焊接工艺适应性研究[D]. 上海: 上海交通大学博士学位论文, 2008.
    [6] 鲍亮亮, 王 勇, 韩 涛, 等. 40 海洋平台焊接技术及发展趋势[J]. 焊接, 2019(1): 27 − 36.

    Bao Liangliang,Wang Yong,Han Tao,et al. Welding technology and development trend of offshore platform[J]. Welding & Joining, 2019(1): 27 − 36.

    [7] 黄海艇. 窄间隙GMAW焊枪设计及立焊工艺特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [8]

    Jokinen T, Kujanpaa V B L L. Multi-pass Nd: yag laser welding of thick section austenitic stainless steel[C]//Proceedings of Laser Inst America, Orlando, USA, 2001: 438 – 447.

    [9] 郭鸿鹏. 铝合金中厚板窄间隙激光焊接技术研究[D]. 南京: 南京理工大学硕士学位论文, 2016.
    [10] 周立涛. 6061铝合金大功率固体激光扫描焊接气孔抑制工艺研究[D].机械科学研究院哈尔滨焊接研究所硕士学位论文, 2014.
    [11] 雷正龙, 李 颖, 陈彦宾, 等. 双光束激光填丝焊工艺对铝合金焊接气孔率的影响[J]. 焊接学报, 2013, 34(2): 40 − 44.

    Lei Zhenglong, Li Ying, Chen Yanbin, et al. Effect of process parameters on porosity formation ratio in dual-beam laser welding of aluminum alloys with filler wire[J]. Transactions of the China Welding Institution, 2013, 34(2): 40 − 44.

    [12] 赵 琳, 张旭东, 陈武柱,等. 光束摆动法减小激光焊接气孔倾向[J]. 焊接学报, 2004, 25(1): 29 − 32.

    Zhao Lin, Zhang Xudong, Chen Wuzhu, et al. Repression of porosity with beam weaving laser welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 29 − 32.

    [13] 王文华. 铝合金振荡扫描激光焊接数值模拟[D]. 武汉: 华中科技大学硕士学位论文, 2016.
  • 期刊类型引用(14)

    1. 武震东,黄瑞生,曹浩,韩鹏薄,李林,魏鹏宇. 光束摆动对窄间隙激光横焊焊缝成形及气孔的影响. 焊接. 2025(01): 8-16 . 百度学术
    2. 董兵天,安子良,陈昊睿,武鹏博,罗玖田,牛董山钰,曹浩. 厚壁钛合金激光填丝焊研究现状及发展趋势. 电焊机. 2025(02): 46-57+69 . 百度学术
    3. 滕彬,范成磊,徐锴,武鹏博,聂鑫,黄瑞生. 厚板窄间隙焊接技术研究现状与应用进展. 焊接学报. 2024(01): 116-128+136 . 本站查看
    4. 张帅,刘同争,徐志宏,代小光,朱朝晖,高明,郭少锋. 光束质量对铝合金激光焊接效率与良率的影响. 中国激光. 2024(12): 11-19 . 百度学术
    5. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 . 百度学术
    6. 韩鹏薄,黄瑞生,孙静涛,李小宇,曹浩. 窄间隙激光填丝焊工艺参数对高强钢焊缝成形及缺陷倾向的影响. 热加工工艺. 2023(21): 32-37+43 . 百度学术
    7. 李路雨,胡永俊,李风,舒畅. 几种常见合金的激光扫描焊接特性及研究现状. 电焊机. 2022(02): 26-35 . 百度学术
    8. 徐亦楠,马青军,武鹏博,黄瑞生,杨悦,方乃文. 浅析厚壁金属材料窄间隙激光填丝焊存在的问题. 金属加工(热加工). 2022(08): 42-48 . 百度学术
    9. 陶武,杨上陆. 铝合金激光焊接技术应用现状与发展趋势. 金属加工(热加工). 2021(02): 1-4 . 百度学术
    10. 徐楷昕,雷振,黄瑞生,方乃文,曹浩. 摆动工艺对钛合金窄间隙激光填丝焊缝成形及气孔率的影响. 中国激光. 2021(06): 143-151 . 百度学术
    11. 吴雁,肖礼军,孙士学,唐德高. 激光在铝合金焊接中的应用研究进展. 热加工工艺. 2021(15): 1-5+11 . 百度学术
    12. 黄瑞生,邹吉鹏,宫建锋,杨义成,梁晓梅. 激光扫描焊接熔池及等离子体动态行为. 焊接学报. 2020(03): 11-16+97 . 本站查看
    13. 孙清洁,李军兆,刘一搏,甄祖阳,靳鹏,李富祥,侯少军,李振锋. 电磁场辅助SUS316L不锈钢扫描激光窄间隙焊接接头成形及组织性能. 中国激光. 2020(10): 73-82 . 百度学术
    14. 王磊,许雪宗,王克鸿,黄勇,彭勇,杨东青. 中厚板7A52铝合金光纤激光焊接接头组织与性能. 焊接学报. 2020(10): 28-31+37+98-99 . 本站查看

    其他类型引用(14)

图(13)  /  表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  54
  • PDF下载量:  35
  • 被引次数: 28
出版历程
  • 收稿日期:  2018-12-08
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-09-30

目录

/

返回文章
返回