高级检索

冷却速率对高氮钢焊缝组织和性能的影响

明珠, 王克鸿, 王伟, 王有祁

明珠, 王克鸿, 王伟, 王有祁. 冷却速率对高氮钢焊缝组织和性能的影响[J]. 焊接学报, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259
引用本文: 明珠, 王克鸿, 王伟, 王有祁. 冷却速率对高氮钢焊缝组织和性能的影响[J]. 焊接学报, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259
MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259
Citation: MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259

冷却速率对高氮钢焊缝组织和性能的影响

基金项目: 总装备部预先研究项目(JSCG2017606B005)
详细信息
    作者简介:

    明珠,男,1973年出生,博士,研究员,主要从事焊接材料设计与开发工作. 发表论文10余篇. Email:mingzhu73424@126.com

    通讯作者:

    王克鸿,男,教授,博士研究生导师. Email:wkh1602@126.com

Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal

  • 摘要: 研究了水冷和空冷条件下高氮不锈钢焊缝金属微观组织和力学性能的变化规律,讨论了冷却速率对高氮不锈钢焊缝微观组织和力学性能的影响规律. 结果表明,冷却速率增加能够有效增加高氮钢焊缝金属中的氮含量,尤其对于含氮量0.85%的高氮含量焊丝,增氮效果更明显. 冷却速率增加对高氮钢焊缝金属抗拉强度提高程度取决于焊丝中的氮含量,对于低氮含量高氮钢焊丝,冷却速率增加能够显著提高焊缝金属抗拉强度,当焊丝中氮含量超过0.58%时,冷却速率增加对焊缝金属抗拉强度影响不大,最终接头强度达到850 MPa.
    Abstract: The micro-structure and mechanical properties of high nitrogen stainless steel weld metals prepared under air and water cooling conditions were investigated and the effect of cooling rate on the micro-structure and mechanical properties of high nitrogen stainless steel weld metal was discussed in this study. The results indicated that an increase in the cooling rate would significantly increase the nitrogen content in the high nitrogen stainless steel weld metal, especially for the one with nitrogen content of 0.85%. Increasing cooling rate could result in the increase in the tensile strength of high nitrogen stainless steel weld metal, which was found to be strongly dependent on the nitrogen content in high nitrogen stainless steel weld wire. For the lower nitrogen content of high nitrogen austenitic stainless steel welding wire, increasing cooling rate could significantly improve the tensile strength of weld metal, but had no influence on the one of weld metal when the nitrogen content beyond 0.58% in the welding wire. The tensile strength of the joint reached 850 MPa finally.
  • 图  1   焊接道次示意图

    Figure  1.   Schematic of multiple pass welding

    图  2   水冷铜板焊接装置示意图

    Figure  2.   Schematic of copper plate cooled by water used in the welding process

    图  3   母材及焊丝钢平衡相图

    Figure  3.   Equilibrium phase diagrams of base metal and welding wires of high nitrogen stainless steel

    图  4   不同合金成分高氮钢焊缝金属空冷和水冷条件下的微观组织形貌

    Figure  4.   Microstructure of weld metals with different compositions prepared under air cooling and water cooling

    图  5   空冷和水冷条件下不同合金成分高氮钢焊缝金属XRD分析结果

    Figure  5.   XRD profiles of the weld metals with different compositions prepared under air cooling and water cooling

    图  6   空冷和水冷条件下不同合金成分高氮不锈钢焊缝抗拉强度

    Figure  6.   Tensile strength of weld metals with different compositions prepared under air cooling and water cooling

    表  1   焊接母材与焊丝钢化学成分(质量分数,%)

    Table  1   Chemical composition of base metal and welding wire

    材料CSiMnCrNiMoN
    母材0.1060.43315.8821.61.80.0260.75
    1号0.0710.8329.2821.567.420.010.35
    2号0.0430.34514.0618.911.590.010.58
    3号0.0330.11818.0822.212.250.910.85
    下载: 导出CSV

    表  2   不同冷却方式条件下焊缝氮含量

    Table  2   Nitrogen content of wled metal prepared under different cooling conditions

    序号焊丝氮含量保护气体焊缝区氮含量
    空冷水冷
    10.35%纯Ar气0.36%0.42%
    20.58%纯Ar气0.53%0.61%
    30.85%纯Ar气0.51%0.66%
    下载: 导出CSV
  • [1]

    Speidel M O. Nitrogen containing austenitic stainless steels[J]. Materialwissenschaft und Werkstofftechnik, 2006, 37(10): 875 − 880.

    [2]

    Qi X, Mao H, Yang Y. Corrosion behavior of nitrogen alloyed martensitic stainless steel in chloride containing solutions[J]. Corrosion Science, 2017, 120: 90 − 98. doi: 10.1016/j.corsci.2017.02.027

    [3]

    Reyes-Hernández D, Manzano-Ramírez A, Encinas A, et al. Addition of nitrogen to GTAW welding duplex steel 2205 and its effect on fatigue strength and corrosion[J]. Fuel, 2017, 198: 165 − 169. doi: 10.1016/j.fuel.2017.01.008

    [4]

    Li M, Wu H, Wang Y, et al. Immobilization of heparin/poly-l-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis[J]. Materials Science and Engineering: C, 2017, 73: 198 − 205. doi: 10.1016/j.msec.2016.12.070

    [5]

    Qiang W, Wang K. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 250: 169 − 181. doi: 10.1016/j.jmatprotec.2017.07.021

    [6]

    Zhang H, Wang D, Xue P, et al. Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling[J]. Journal of Materials Science & Technology, 2018, 34(11): 2183 − 2188.

    [7]

    Mohammed R, Reddy G M, Rao K S. Welding of nickel free high nitrogen stainless steel: microstructure and mechanical properties[J]. Defence Technology, 2017, 13(2): 59 − 71. doi: 10.1016/j.dt.2016.06.003

    [8]

    Li X, Zhang H. Analysis of microstructure and properties of welded joint of high nitrogen steel by hybrid welding[J]. Materials Research Express, 2018, 6(4): 1 − 4.

    [9]

    Lan H F, Du L X, Liu X H. Microstructure and mechanical properties of a low carbon bainitic steel[J]. Steel Research International, 2013, 84(4): 352 − 361. doi: 10.1088/2053-1591/aad6c5

    [10] 赵 琳, 陈武柱, 张旭东. 新一代超低碳贝氏体钢激光焊接热影响区的组织和性能[J]. 中国激光, 2006, 33(3): 408 − 412.

    Zhao Lin, Chen Wuzhu, Zhang Xudong. Microstructure and mechanical properties of laser welded heat-affected zone in new ultra-low carbon bainitic steel[J]. Laser Technology, 2006, 33(3): 408 − 412.

    [11]

    Ming Zhu, Wang Kehong, Qu Tianpeng, et al. Thermodynamic study on welding wire design of high nitrogen austenitic stainless steel[J]. China Welding, 2019, 28(1): 49 − 55.

    [12] 赵 琳, 田志凌, 彭 云, 等. 1Cr22Mn16N高氮钢激光焊接I. 焊接保护气体组成和热输入对焊缝氮含量及气孔性的影响[J]. 焊接学报, 2007, 28(8): 89 − 91.

    Zhao Lin, Tian Zhiling, Peng Yun, et al. Laser welding of high nitrogen steel 1Cr22Mn16N I .influence of shielding gas composition and heat input on N-content and porosity of weld metal[J]. Transactions of the China Welding Institution, 2007, 28(8): 89 − 91.

    [13] 明 珠, 王克鸿, 王 伟, 等. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104 − 108.

    Ming Zhu, Wang Kehong, Wang Wei, et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104 − 108.

  • 期刊类型引用(14)

    1. 陈玉龙,别渭毅,鲁军,杨盼盼,张力. 超薄板脉冲激光焊接工艺特性及成形质量控制. 航天制造技术. 2024(01): 38-42 . 百度学术
    2. 张鑫源,孙振邦. 能量配比对铝合金激光-MIG复合焊接残余应力的影响. 焊接. 2024(06): 47-53 . 百度学术
    3. 赵轩. 激光加工在电梯钣金件制造领域中的应用. 中国电梯. 2024(11): 70-73 . 百度学术
    4. 张景祺,相志磊,王细波,雷永平,林健. 超薄板焊后波浪变形的形成原因及控制方法探讨. 机械工程学报. 2022(04): 72-79 . 百度学术
    5. 陆国强,赵航,吴馥云. 基于激光光栅载波技术的微位移测量方法. 激光杂志. 2022(04): 65-69 . 百度学术
    6. 张曌,李嘉宁. 激光精密加工成型技术及产业化应用. 中国铸造装备与技术. 2022(03): 16-22 . 百度学术
    7. 何建萍,吴鑫,吉永丰,卢飞. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理. 焊接学报. 2021(06): 77-84+101-102 . 本站查看
    8. 黄波,王旺,王佳,李轩,何庆中,左超. 全焊接球阀焊接残余应力及变形数值模拟. 油气储运. 2021(08): 895-902 . 百度学术
    9. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
    10. 钱伟,蒋明. 数字图像相关方法中数字散斑场的制作与应用研究. 液晶与显示. 2020(08): 861-869 . 百度学术
    11. 火巧英,闫海宁,涂本荣,陆安进. 焊接工艺参数对Q345NQR2耐候钢激光焊焊缝成形的影响. 焊接技术. 2020(08): 16-18+105-106 . 百度学术
    12. 王旺,王佳,曹修全,何庆中,刘惺. Q235钢等离子熔覆的残余应力及变形数值模拟. 特种铸造及有色合金. 2020(09): 975-979 . 百度学术
    13. 吴承隆,尹浩,黄泽涵. GH4169镍基高温合金脉冲激光焊工艺参数优化. 工具技术. 2020(10): 38-42 . 百度学术
    14. 朱国仁,庞立林,朱慨迅,杨明,王洪潇. 预拉伸对不锈钢电阻点焊接头疲劳寿命的影响. 焊接. 2020(11): 1-4+61 . 百度学术

    其他类型引用(15)

图(6)  /  表(2)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  59
  • PDF下载量:  28
  • 被引次数: 29
出版历程
  • 收稿日期:  2018-06-03
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回