高级检索

自保护药芯焊丝焊接工艺参数的敏感性分析

顾玉芬, 谢金龙, 张恒铭, 石玗

顾玉芬, 谢金龙, 张恒铭, 石玗. 自保护药芯焊丝焊接工艺参数的敏感性分析[J]. 焊接学报, 2019, 40(10): 25-30. DOI: 10.12073/j.hjxb.2019400258
引用本文: 顾玉芬, 谢金龙, 张恒铭, 石玗. 自保护药芯焊丝焊接工艺参数的敏感性分析[J]. 焊接学报, 2019, 40(10): 25-30. DOI: 10.12073/j.hjxb.2019400258
GU Yufen, XIE Jinlong, ZHANG Hengming, SHI Yu. Sensitivity analysis of process parameters of self-shielded flux cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 25-30. DOI: 10.12073/j.hjxb.2019400258
Citation: GU Yufen, XIE Jinlong, ZHANG Hengming, SHI Yu. Sensitivity analysis of process parameters of self-shielded flux cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 25-30. DOI: 10.12073/j.hjxb.2019400258

自保护药芯焊丝焊接工艺参数的敏感性分析

基金项目: 国家自然科学基金资助项目(51765037);甘肃省基础研究创新群体计划项目(17JR5RA107);甘肃省高校协同创新团队项目(2017C-07)
详细信息
    作者简介:

    顾玉芬,女,1975年出生,副教授. 主要从事异种材料焊接性及接头性能研究、新材料制备等方向研究. Email:guyf@lut.cn

Sensitivity analysis of process parameters of self-shielded flux cored wire

  • 摘要: 自保护药芯焊丝是一种适合于野外作业的焊接材料,广泛应用于船舶、钻井平台、石油管道、集装箱等结构件焊接及修复. 采用自保护药芯焊丝在Q235钢板表面进行单层单道平板堆焊试验,运用二次回归通用旋转组合设计方法建立了电弧电压、送丝速度、焊接速度与熔宽、余高、熔高的二次回归数学模型,分析了工艺参数与熔敷几何尺寸的关系. 结果表明,该模型能够预测稳定工艺区间内工艺参数变化对熔敷层几何尺寸的影响规律;当电压较低时,送丝速度是影响熔宽和余高的主要因素,电压较高时,焊接速度是影响熔宽和余高的主要因素.
    Abstract: Self-shielded flux cored wire is a kind of welding material suitable for field project, which is widely used in welding and repair of field project such as ships, drilling platforms, oil pipelines and containers. Single-layer single-bead welding was carried out on the surface of Q235 steel by self-shielded flux cored wire, and quadratic regression mathematical model between arc voltage, wire feeding speed, welding speed and melting width, reinforcement, melting height was established by quadratic regression universal rotating combination design method. The relationship between process parameters and deposited geometries is analyzed, the results show that the model can predict the influence of process parameter variation on the geometry of the deposited layer in the stable process interval. The wire feeding speed is the main factor affecting the melting width and reinforcement at low voltage, while the welding speed is the main factor affecting the melting width and reinforcement at high voltage.
  • 图  1   熔敷层几何尺寸示意图

    Figure  1.   Diagram of the geometric dimensions of the cladding layer

    图  2   回归方程检验

    Figure  2.   Regression equation test

    图  3   熔宽对电弧电压、送丝速度、焊接速度的敏感性

    Figure  3.   Sensitivity of melting width to arc voltage, wire feeding speed and welding speed

    图  4   余高对电弧电压、送丝速度、焊接速度的敏感性

    Figure  4.   Sensitivity of reinforcement to arc voltage, wire feeding speed and welding speed

    图  5   熔高对电弧电压、送丝速度、焊接速度的敏感性

    Figure  5.   Sensitivity of melting height to arc voltage, wire feeding speed and welding speed

    表  1   自保护药芯焊丝熔敷金属化学成分(质量分数,%)

    Table  1   Deposited metal chemical composition of self-shielded flux cored wire

    CWMnSiFe
    1.5 ~ 3.040.0 ~ 50.0 ≤ 2.0 ≤ 4.0余量
    下载: 导出CSV

    表  2   因素水平编码表

    Table  2   Factor levels coding table

    水平电弧电压U/V送丝速度vf/(mm·s–1)焊接速度v/(mm·s–1)
    –1.68223.6413.832.76
    –125.0016.673.33
    027.0020.834.17
    129.0025.005.00
    1.68230.3627.845.57
    下载: 导出CSV

    表  3   回归方程拟合度和回归方差分析

    Table  3   Analysis of regression equation fitting degree and regression variance

    熔宽W/mm余高H/mm熔高P/mm
    FLfFFLfFFLfF
    10.1212.363.457.789.365.02
      其中FLf为拟合度,F为回归方差.
    下载: 导出CSV

    表  4   试验结果

    Table  4   Experimental results

    序号电弧电压z1送丝速度z2焊接速度z3熔宽W/mm余高H/mm熔高P/mm
    11119.021.263.68
    211–111.592.013.68
    31–1–19.411.733.10
    41–117.411.102.40
    5–1–117.531.262.56
    6–1–1–18.951.452.64
    7–11–110.762.074.84
    8–1119.201.953.64
    9–1.682008.901.673.16
    101.682009.371.282.56
    110–1.682010.502.093.84
    1201.68207.441.022.54
    1300–1.6827.971.372.84
    14001.68210.361.783.26
    150009.321.603.20
    160009.111.572.80
    170008.951.653.10
    180008.801.693.10
    190008.901.633.00
    200009.061.703.20
    下载: 导出CSV
  • [1] 牛全峰. 自保护药芯焊丝的研究[D]. 武汉: 武汉理工大学2005.
    [2]

    Liu D, Wang J, Zhang Y, et al. Effect of Mo on microstructure and wear resistance of slag-free self-shielded metal-cored welding overlay[J]. Journal of Materials Processing Technology, 2019, 270: 82 − 91. doi: 10.1016/j.jmatprotec.2019.02.024

    [3]

    Liu D, Long W, Wu M, et al. Microstructure and wear performance of cobalt-containing iron-based slag-free self-shielded flux-cored wire[J]. Journal of Materials Engineering and Performance, 2019, 28(4): 2158 − 2166. doi: 10.1007/s11665-019-04002-5

    [4] 栗卓新, 皇甫平, 陈邦固, 等. 自保护药芯焊丝熔滴过渡的控制[J]. 机械工程学报, 2001, 37(7): 108 − 112. doi: 10.3321/j.issn:0577-6686.2001.07.028

    Li Zhuoxin, Huang Puping, Chen Banggu, et al. Control of droplet transfer in self-shielded flux-cored wi[J]. Journal of Mechanical Engineering, 2001, 37(7): 108 − 112. doi: 10.3321/j.issn:0577-6686.2001.07.028

    [5]

    Zhang X, Guo N, Xu C, et al. Influence of CaF2 on microstructural characteristics and mechanical properties of 304 stainless steel underwater wet welding using flux-cored wire[J]. Journal of Manufacturing Processes, 2019, 45: 138 − 146. doi: 10.1016/j.jmapro.2019.07.003

    [6]

    Kannan T, Murugan N. Effect of flux cored arc welding process parameters on duplex stainless steel clad quality[J]. Journal of Materials Processing technology, 2006, 176(1): 230 − 239.

    [7] 袁志发, 周静芋. 试验设计与分析[M]. 北京: 高等教育出版社, 2000.
    [8] 李云雁, 胡传荣. 试验设计与数据处理(第二版)[M]. 北京: 化学工业出版社, 2008.
    [9]

    Karaoğlu S, Seçgin A. Sensitivity analysis of submerged arc welding process parameters[J]. Journal of Materials Processing Technology, 2008, 202(1–3): 500 − 507. doi: 10.1016/j.jmatprotec.2007.10.035

    [10]

    Qi L H, Jin Z L, Zhang J M, et al. Influence factors of X80 pipeline steel girth welding with self-shielded flux-cored wire[J]. Materials Science and Technology, 2017, 33(5): 592 − 601. doi: 10.1080/02670836.2016.1238646

    [11]

    Kim I S, Son K J, Yang Y S, et al. Sensitivity analysis for process parameters in GMA welding processes using a factorial design method[J]. International Journal of Machine Tools & Manufacture, 2003, 43(8): 763 − 769.

  • 期刊类型引用(8)

    1. 任泽良,项肇,余细平,肖中,孙俊峰. 6061铝合金MIG焊接头的组织和力学性能研究. 热加工工艺. 2023(03): 139-141+148 . 百度学术
    2. 张子傲,张知航,黄继华,陈树海,叶政,杨健. 高速列车铝合金车体焊接工艺研究进展. 轨道交通材料. 2023(01): 1-7 . 百度学术
    3. 田洪雷,吴广宇,王天,王富杰,郄默繁,何长树. 微观组织特征对服役6N01-T6铝合金材料力学性能的影响. 轻金属. 2022(04): 49-54 . 百度学术
    4. 辛雅轩,孙卓彬,王贯盈,梁永梅,彭珍珍,刘豫,韩帅琦. 高密度电脉冲处理时间对6N01铝合金微观组织和力学性能的影响. 金属加工(热加工). 2022(07): 51-53 . 百度学术
    5. 王晓军,杨健,路彦龙,安兵. 6N01铝合金K-TIG焊接头的组织及性能. 焊接技术. 2021(08): 19-23+105-106 . 百度学术
    6. 韩成才,曹嘉晨,郭龙龙. 背面冷却对316L对接接头焊接残余应力和变形的影响. 西安石油大学学报(自然科学版). 2021(05): 99-107 . 百度学术
    7. 王建军,张豪,田妮,何长树,赵刚. 6N01铝合金挤压材显微组织及其力学性能的相关性. 轻合金加工技术. 2020(02): 25-32 . 百度学术
    8. 王立伟,索英超,吴朝峰,汪殿龙,梁志敏,董思齐. 高频脉冲复合直流TIG对6N01铝合金焊接接头组织和硬度的影响. 沈阳大学学报(自然科学版). 2019(03): 173-177 . 百度学术

    其他类型引用(7)

图(5)  /  表(4)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  36
  • PDF下载量:  24
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-09-24
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回