Electric simulation inertia friction welding technology
-
摘要: 为适应摩擦焊接设备的发展,降低制造成本,在对惯性摩擦焊接过程运动学方程分析基础上,结合电模拟惯量技术,开发出了电模拟惯性摩擦焊接技术及设备. 结果表明,电模拟惯性摩擦焊接过程中各参数随时间的变化规律,以及惯量大小对焊接参数的影响规律,符合惯性摩擦焊接的一般规律. 相同惯量下,电模拟惯性摩擦焊接与机械惯量惯性摩擦焊接过程转速曲线变化趋势一致. 采用电模拟惯性摩擦焊接技术,所需惯量可以设定成大于系统基本惯量,也可以设定成等于或低于系统基本惯量,还可以补偿主轴机械摩擦阻力对焊接过程参数的影响.Abstract: In order to adapt to the current development of friction welding equipment and reduce the manufacturing cost, the electro-simulated inertia friction welding technology and equipment are developed, based on the analysis of the kinematics equation of inertia friction welding process and the electric simulation inertia technology. The result shows that the regularity of the change of parameters over time and the influence of inertia size on welding parameters are in accordance with the general law of inertia friction welding during the electric simulation. The rotational speed curve of inertial friction welding is consistent with that of mechanical inertia friction welding process under the same inertia. The inertia can be set to be larger than the basic inertia of the system, and can be set to equal or lower than the basic inertia of the system by electric simulation inertial friction welding technology. The effect of friction resistance of spindle on the parameters of welding process can be compensated by electro-simulated inertial friction welding technique.
-
-
表 1 不同惯量下焊接试验参数与结果
Table 1 Parameters and results of different inertia experiments
惯量J/(kg·m2) 初始转速n/(r·min−1) 摩擦压力pf/MPa 摩擦缩短量S/mm 焊接时间t/s 5 1 600 70 2.9 2.6 6.36 1 600 70 3.0 3.3 8 1 600 70 4.9 3.9 11 1 600 70 7.9 5.3 表 2 电惯量与机械惯量惯性摩擦焊接对比试验参数与结果
Table 2 Parameters and result of the contrast experiment of the mechanical and electronic inertia friction welding
惯量方式 初始转速
n/(r·min−1)摩擦压力pf/MPa 摩擦缩短量S/mm 焊接时间
t/s机械惯量 1 000 70 2.1 1.6 电模拟 1 000 70 2.1 1.6 表 3 参数设定与结果
Table 3 Parameters setting and result
惯量J/(kg·m2) 初始转速n/(r·min−1) 是否补偿
阻力矩摩擦缩短量S/mm 焊接时间t/s 6.36 1 600 否 7.51 5 6.36 1 600 是 12.29 7.79 -
[1] Spindler D E. What industry needs to know about friction welding[J]. Welding Journal, 1994, 73(3): 37 − 42.
[2] Oberle T L, Loyd C D, Calton M R. Caterpillar's inertia weld process[J]. SAE Trans, 1967, 75: 123 − 127.
[3] Guo Wei, You Guoqiang, Yuan Guangyu, et al. Microstructure and mechanical properties of dissimilar inertia friction welding of 7A04 aluminum alloy to AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2017, 695: 3267 − 3277. doi: 10.1016/j.jallcom.2016.11.218
[4] Qin Guoliang, Liang Yongliang, GengPeihao, et al. Numerical analysis of thermal process in continuous drive radial friction welding[J]. China Welding, 2015, 24(1): 18 − 24.
[5] 罗 键, 陈 欢, 刘姗姗. 惯性摩擦焊接头特性的研究现状[J]. 焊接, 2017(1): 13 − 17. doi: 10.3969/j.issn.1001-1382.2017.01.004 Luo Jian, Chen Huan, Liu Shanshan. The research status of inertia friction welded joint properties[J]. Welding & Joining, 2017(1): 13 − 17. doi: 10.3969/j.issn.1001-1382.2017.01.004
[6] Kessler M, Suenger S, Haubold M, et al. Modeling of upset and torsional moment during inertia friction welding[J]. Journal of Materials Processing Tech, 2016, 227: 34 − 40. doi: 10.1016/j.jmatprotec.2015.07.024
[7] 耿培皓, 秦国梁. 惯性摩擦焊接技术及其在航空工业领域的应用[J]. 精密成形工程, 2017(5): 73 − 82. doi: 10.3969/j.issn.1674-6457.2017.05.010 Geng Peihao, Qin Guoliang. Inertia friction welding technology and its application in aviation industry field[J]. Journal of Netshape Forming Engineering, 2017(5): 73 − 82. doi: 10.3969/j.issn.1674-6457.2017.05.010
[8] 李洪山, 孙英达, 庆振华. 电惯量模拟机械转动惯量方法的研究[J]. 制造业自动化, 2009, 31(6): 20 − 21. doi: 10.3969/j.issn.1009-0134.2009.06.006 Li Hongshan, Sun Yingda, Qing Zhenhua. Research on method that electronic inertia simulates mechanic moment of inertia[J]. Manufacturing Automation, 2009, 31(6): 20 − 21. doi: 10.3969/j.issn.1009-0134.2009.06.006
[9] 查鸿山, 刘 亢. 基于能量等效和加速度等效的电动汽车电惯量的模拟[J]. 汽车安全与节能学报, 2016, 7(2): 230 − 235. doi: 10.3969/j.issn.1674-8484.2016.02.014 Zha Hongshan, Liu Kang. Electrical inertia simulation for electric vehicles based on energy equivalent and acceleration equivalent[J]. Journal of Automotive Safety and Energy, 2016, 7(2): 230 − 235. doi: 10.3969/j.issn.1674-8484.2016.02.014
[10] 帅忠全, 高 飞, 祁 伟, 等. 一种基于模拟惯量偏差的电惯量控制算法[J]. 中国惯性技术学报, 2018, 26(1): 127 − 132. Shuai Zhongquan, Gao Fei, Qi Wei, et al. Electrical inertia control algorithm based on simulation inertia deviation[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 127 − 132.
[11] 杜随更. 电模拟惯性摩擦焊接方法: 中国, CN104741770A[P]. 2015–07–01. [12] Senlov O, Mahaffey N, Tung D, et al. Efficiency of the inertia friction welding process and its dependence on process parameters[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3328 − 3342. doi: 10.1007/s11661-017-4115-9
[13] 杜随更, 杨正强, 于龙岐. 摩擦焊机施力系统模糊PI控制方法[J]. 焊接学报, 2011, 32(12): 21 − 24. Du Suigeng, Yang Zhengqiang, Yu Longqi. Fuzzy-PI algorithm of load system of friction welding machine[J]. Transactions of the China Welding Institution, 2011, 32(12): 21 − 24.
[14] Jeong H S, Cho J R, Oh J S, et al. Inertia friction welding process analysis and mechanical properties evaluation of large rotor shaft in marine turbo charger[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(1): 83 − 88. doi: 10.1007/s12541-010-0010-7
[15] Yang Jun, Li Jinglong, Jin Feng 1. Effect of welding parameters on high-temperature tensile and fatigue properties of FGH96 inertia friction welded joints[J]. Welding in the World, 2019, 63(4): 1033 − 1053. doi: 10.1007/s40194-019-00740-1
[16] Ding Yuhan, You Guoqiang, Wen Hengyu, et al. Microstructure and mechanical properties of inertia friction welded joints between alloy steel 42CrMo and cast Ni-based superalloy K418[J]. Journal of Alloys and Compounds, 2019, 803: 176 − 184. doi: 10.1016/j.jallcom.2019.06.136
-
期刊类型引用(4)
1. 孔玲,王玉辉,杨浩坤,彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展. 机械工程学报. 2024(08): 34-47 . 百度学术
2. 万亚雄,唐立志,武学俊,章小峰,张朋彦,黄贞益. Fe-Mn-Al-C低密度高强钢焊接技术的研究与进展. 焊接. 2020(08): 45-51+63-64 . 百度学术
3. 宫唤春. 视觉传感技术在大功率光纤激光焊接焊缝宽度特征提取的应用. 激光杂志. 2019(04): 158-160 . 百度学术
4. 邵天巍,薛俊良,万占东,郭伟. QP980-DP980异种先进高强钢激光焊接头微观组织及力学性能. 焊接. 2019(07): 5-9+65 . 百度学术
其他类型引用(2)