高级检索

Co-Nb-Pd-Ni-V钎料真空钎焊Cf/SiC复合材料的接头组织与性能

李文文, 熊华平, 吴欣, 陈波

李文文, 熊华平, 吴欣, 陈波. Co-Nb-Pd-Ni-V钎料真空钎焊Cf/SiC复合材料的接头组织与性能[J]. 焊接学报, 2019, 40(9): 128-132. DOI: 10.12073/j.hjxb.2019400248
引用本文: 李文文, 熊华平, 吴欣, 陈波. Co-Nb-Pd-Ni-V钎料真空钎焊Cf/SiC复合材料的接头组织与性能[J]. 焊接学报, 2019, 40(9): 128-132. DOI: 10.12073/j.hjxb.2019400248
LI Wenwen, XIONG Huaping, WU Xin, CHEN Bo. Microstructure and strength of the Cf/SiC composite joint brazed with Co-Nb-Pd-Ni-V filler alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 128-132. DOI: 10.12073/j.hjxb.2019400248
Citation: LI Wenwen, XIONG Huaping, WU Xin, CHEN Bo. Microstructure and strength of the Cf/SiC composite joint brazed with Co-Nb-Pd-Ni-V filler alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 128-132. DOI: 10.12073/j.hjxb.2019400248

Co-Nb-Pd-Ni-V钎料真空钎焊Cf/SiC复合材料的接头组织与性能

Microstructure and strength of the Cf/SiC composite joint brazed with Co-Nb-Pd-Ni-V filler alloy

  • 摘要: 采用自行设计的Co-Nb-Pd-Ni-V高温活性钎料对碳纤维增强碳化硅(Cf/SiC)复合材料进行钎焊连接,钎焊温度为1 200 ~ 1 320 ℃,钎焊时间固定为10 min. 结果表明,钎料中的V和Nb元素同时发挥反应活性,与Cf/SiC复合材料发生界面反应,在陶瓷界面形成了VC和NbC双层界面反应层. 当钎焊参数为1 280 ℃/10 min,典型的接头组织为(VC/NbC)双界面反应层/(Co,Ni)2Si + CoSi + NbC + Pd2Si/(NbC/VC)双界面反应层. 在此参数下获得的接头性能最佳,其中室温三点弯曲强度为61.0 MPa,在900和1 000 ℃下测得的强度均高于其室温强度,分别为83.2和87.7 MPa. 接头中的NbC和Pd2Si高熔点物相弥散分布在钎缝内部,大大提高了接头的高温性能.
    Abstract: The Cf/SiC composite joint was brazed with newly-designed Co-Nb-Pd-Ni-V filler alloy at the brazing temperature from 1 200℃ to 1 320℃, and the brazing time was fixed at 10 min. The results showed that elements V and Nb in filler alloy played active roles in the interfacial reactions during the brazing procedure, and two interfacial reaction layers VC and NbC were formed at the Cf/SiC surface. Under the brazing condition of 1 280℃/-10 min, the joint microstructure can be characterized as (VC/NbC) double layers/(Co, Ni)2Si + CoSi + NbC + Pd2Si/(NbC/VC) double layers. The optimum joint strength can be achieved brazed at 1 280℃ for 10 min, and the room-temperature bend strength was 61.0 MPa. Furthermore, the joint strength tested at 900 and 1 000℃ was even elevated to 83.2 and 87.7 MPa, respectively. The good high-temperature joint strength can be attributed to the formation of high-melting-point compounds, such as NbC and Pd2Si.
  • [1] Ishikawa T, Kajii S, Matsanaga K, et al. A tough, thermally conductive silicon carbide composite with high strength up to 1600℃ in air[J]. Science, 1988, 282:1295-1297.
    [2] Lamourous F, Bertrand S, Pailler R, et al. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites[J]. Composites Science and Technology, 1999, 59(2):1073-1085.
    [3] Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautic, 2004, 55:409-420.
    [4] Cockeram B V. Flexural strength and shear strength of silicon carbide to silicon carbide joints fabricated by molybdenum diffusion bonding technique[J]. Journal of American Ceramic Society, 2005, 88:1892-1899.
    [5] Zhang J, Zhang Q, Liu C F, et al. Effect of brazing temperature on microstructure and mechanical properties of 2D Cf/SiC and Nb joints brazed with Co-Ti-Nb filler alloy[J]. Materials Science and Engineering A, 2015, 634:116-122.
    [6] Singh M. A reaction forming method for joining of silicon carbide-based ceramics[J]. Scripta Materialia, 1997, 37(8):1151-1154.
    [7] Luo Z H, Jiang D L, Zhang J X, et al. Development of SiC-SiC joint by reaction bonding method using SiC/C tapes as the interlayer[J]. Journal of European Ceramic Society, 2012, 32:3819-3824.
    [8] 蔡创,熊进辉,黄继华,等. Cf/SiC复合材料与钛合金Ag-Cu-Ti活性钎焊[J].焊接学报, 2011, 32(4):49-51 Cai Chuang. Xiong Jinhui, Huang Jihua, et al Brazing of Cf/SiC and Ti alloy by using Ag-Cu-Ti active brazing alloy[J]. Transaction of the China Welding Institution, 2011, 32(4):49-51
    [9] 崔冰,黄继华,蔡创,等. Cf/SiC复合材料与钛合金(Ti-Zr-Cu-Ni)+W复合钎焊分析[J].焊接学报, 2013, 34(7):55-58 Cui Bing, Huang Jihua, Cai Chuang, et al. Brazing of Cf/SiC composite to Ti alloy with (Ti-Zr-Cu-Ni)+W composite filler material[J]. Transaction of the China Welding Institution, 2013, 34(7):55-58
    [10] Xiong H P, Chen B, Pan Y, et al. Interfacial reactions and joining characteristics of a Cu-Pd-V system filler alloy with Cf/SiC composite[J]. Ceramics International, 2014, 40:7857-7863.
    [11] Xiong H P, Chen B, Pan Y, et al. Joining of Cf/SiC composite with a Cu-Au-Pd-V brazing filler and interfacial reactions[J]. Journal of the European Ceramic Society, 2014, 34:1481-1486.
    [12] Liu Y Z, Zhang L X, Liu C B, et al. Braing C/SiC composites and Nb with TiNiNb active filler metal[J]. Science and Technology of Welding and Joining, 2011, 16(2):193-198.
    [13] 叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社, 2002.
    [14] Miedema A R, De Boer F R, Boom R, et al. Tables for the heat of solution of liquid metals in liquid metal solvents[J]. Calphad, 1977, 1(4):353-359.
  • 期刊类型引用(5)

    1. 常青,张丽霞. 先进功能材料钎焊连接研究进展. 机械制造文摘(焊接分册). 2023(05): 1-11 . 百度学术
    2. 徐晓卫,李宁,刘自豪,石浩江,张幖,李锐,张玉鲜,刘楠. 碳化硅陶瓷连接技术研究现状. 电焊机. 2022(08): 10-19 . 百度学术
    3. 常青,张丽霞. 先进功能材料钎焊连接研究进展. 焊接学报. 2022(12): 1-11+113 . 本站查看
    4. 隋然,林巧力. SnAgCu-xTi在单晶硅表面的润湿行为. 焊接学报. 2020(04): 90-96+102 . 本站查看
    5. 王志鹏,杨文静,曹来东,肖爱群. 钼/不锈钢离子源加速器真空钎焊工艺. 焊接. 2019(11): 62-64+68 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  344
  • HTML全文浏览量:  7
  • PDF下载量:  118
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-12-02

目录

    /

    返回文章
    返回