高级检索

导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响

张增焕, 苏轩, 李昊, 陶汪, 王玉华

张增焕, 苏轩, 李昊, 陶汪, 王玉华. 导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响[J]. 焊接学报, 2019, 40(9): 93-98. DOI: 10.12073/j.hjxb.2019400242
引用本文: 张增焕, 苏轩, 李昊, 陶汪, 王玉华. 导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响[J]. 焊接学报, 2019, 40(9): 93-98. DOI: 10.12073/j.hjxb.2019400242
ZHANG Zenghuan, SU Xuan, LI Hao, TAO Wang, WANG Yuhua. Effect of energy director on microstructure and mechanical properties of CF/PEEK joints obtained by ultrasonic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 93-98. DOI: 10.12073/j.hjxb.2019400242
Citation: ZHANG Zenghuan, SU Xuan, LI Hao, TAO Wang, WANG Yuhua. Effect of energy director on microstructure and mechanical properties of CF/PEEK joints obtained by ultrasonic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 93-98. DOI: 10.12073/j.hjxb.2019400242

导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响

基金项目: 先进焊接与连接国家重点实验室开放课题研究基金资助(AWJ-16-M14)

Effect of energy director on microstructure and mechanical properties of CF/PEEK joints obtained by ultrasonic welding

  • 摘要: 通过超声波焊接方法实现碳纤维增强聚醚醚酮(CF/PEEK)试件的连接,重点研究了导能筋形状对接头组织和力学性能的影响. 结果表明,当使用矩形和三角形导能筋时,由于导能筋的粘弹性变形大,界面的升温速率快,且界面温度高,接头的热影响区(HAZ)较大,在热影响区由于碳纤维和树脂界面有较大的热应力,容易产生裂纹等缺陷,液态树脂流动方式很容易造成气孔缺陷,接头的力学性能较差. 使用平面导能筋,当超声作用时间为0.9 s时,界面形成了良好的连接,液态树脂流动方式优于三角形和矩形导能筋,接头中不会出现气孔缺陷,接头的抗剪强度可以达到28 MPa.
    Abstract: The ultrasonic welding was employed to connect carbon-fiber-reinforced polyetherether-ketone (CF/PEEK) composites. The effects of the shapes of energy directors (ED) on the microstructure and mechanical property of joints were mainly investigated. The results showed that the heat affected zone (HAZ) of the joints was larger when the rectangular or triangular ED were used, which was caused by the high viscoelastic deformation of EDs, rapid heating rate at the interface and high interface temperature. Thermal stress was larger at the interface between carbon fiber and resin in the HAZ, which easily resulted in cracks and other defects. In addition, the flow pattern of ED made void defects easily occurred. Therefore, the joints had poor mechanical property. When flat ED was used, the interface formed a good connection with ultrasonic action time of 0.9 s. The flow pattern of flat ED was better than that of the rectangular and triangular ED, so no void defects occurred in joints whose tensile-shear strength could reach 28 MPa.
  • [1] 张照.碳纤维织物增强聚醚醚酮基(CFF/PEEK)航空复合材料的制备及其界面改性[D].上海:东华大学, 2017.
    [2] 沈镇,秦滢杰,陈书华,等.碳纤维/聚醚醚酮复合材料的激光原位成型工艺探究[J].固体火箭技术, 2019, 42(2):229-233 Shen Zhen, Qin Yingjie, Chen Shuhua, et al. Study on the laser in-situ winding process of carbon fiber reinforced PEEK composite[J]. Journal of Solid Rocket Technology, 2019, 42(2):229-233
    [3] Regis M, Zanetti M, Pressacco M, et al. Opposite role of different carbon fiber reinforcements on the non-isothermal crystallization behavior of poly (etheretherketone)[J]. Materials Chemistry and Physics, 2016, 179:223-231.
    [4] 张增焕,刘红兵.航空领域热塑性纤维复合材料焊接技术发展研究[J].航空制造技术, 2015(14):72-75 Zhang Zenghuan, Liu Hongbing. Research on development of welding technology of fiber reinforced thermo plastics in the aviation[J]. Aeronautical Manufacturing Technology, 2015(14):72-75
    [5] Wang K, Shriver D, Li Y, et al. Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites[J]. Journal of Manufacturing Processes, 2017, 29:124-132.
    [6] 支倩.无导能槽碳纤维增强尼龙66复合材料的超声波焊接[D].郑州:郑州大学, 2017.
    [7] Zhang Z, Wang X, Luo Y, et al. Study on heating process of ultrasonic welding for thermoplastics[J]. Journal of Thermoplastic Composite Materials, 2010, 22(6):647-664.
    [8] 张宗波,贺庆强,罗怡,等.超声波塑料焊接临界温度场分析[J].焊接学报, 2016, 37(1):20-22 Zhang Zongbo, He Qingqiang, Luo Yi, et al. Analysis on critical temperature field during ultrasonic welding of thermoplastics[J]. Transactions of the China Welding Institution, 2016, 37(1):20-22
    [9] 高阳,陈风波,赵云峰.塑料超声波焊接质量影响因素的研究进展[J].宇航材料工艺, 2006, 36(6):9-13 Gao Yang, Chen Fengbo, Zhao Yunfeng. Research on factors affecting quality of ultrasonically welded plastic[J]. Aerospace Materials&Technology, 2006, 36(6):9-13
    [10] Suresh K S, Rani M R, Prakasan K. Modeling of temperature distribution in ultrasonic welding of tthermoplastics for various joint designs[J]. Journal of Materials Processing Technology, 2007, 186(1-3):138-146.
    [11] Levy A, Corre S L, Chevaugeon N, et al. A level set based approach for the finite element simulation of a forming process involving multiphysics coupling:Ultrasonic welding of thermoplastic composites[J]. European Journal of Mechanics-A/Solids, 2011, 30(4):501-509.
    [12] Liu S J, Chang I T. Optimizing the weld strength of ultrasonically welded nylon composites[J]. Journal of Composite Materials, 2002, 36(5):611-624.
  • 期刊类型引用(15)

    1. 于洋,高志伟,龚宝明,邓彩艳,刘锦,苏显栋. 硫化氢环境中X80管线钢焊接粗晶热影响区的断裂韧性. 焊接. 2025(01): 40-45 . 百度学术
    2. 谢耿,张斌,刘海龙,沐卫东,蔡艳. 690 MPa低合金高强钢焊接技术及接头组织研究进展. 热加工工艺. 2024(17): 8-12+19 . 百度学术
    3. 赵阳,刘旭明,张楠,王军生,潘辉. 准动态模型预估的Q960E大梁钢SR-CGHAZ疲劳裂纹扩展机理. 焊接学报. 2024(09): 84-93 . 本站查看
    4. 朱梓坤,韩阳,张舟,张义,周龙早. Q690D低合金高强钢模拟焊接热影响区的组织和性能. 焊接. 2022(01): 26-33+40 . 百度学术
    5. 张庆素,陈振业,陈波,齐建军,胡晓波,冯伟. Q690抗震耐蚀钢埋弧焊熔敷金属性能研究. 电焊机. 2022(03): 105-110 . 百度学术
    6. 朱梓坤,韩阳,张舟,张义,周龙早. Q690D低合金高强钢模拟焊接热影响区的组织和性能. 机械制造文摘(焊接分册). 2022(03): 12-19+36 . 百度学术
    7. 孙宪进,诸建阳,许峰. 热输入对贝氏体海工钢焊接热影响区显微组织与低温韧性的影响. 特钢技术. 2021(01): 17-20 . 百度学术
    8. 张楠,田志凌,潘辉,郑江鹏,侯晓东. 热轧汽车结构钢在轻量化商用车上的发展与应用. 汽车文摘. 2020(09): 1-11 . 百度学术
    9. 李俊江,王焱. 热力管道平焊法兰焊缝失效分析. 焊接技术. 2020(08): 90-92 . 百度学术
    10. 杜宝帅,索帅,张忠文,李新梅,邓化凌. Q690高强钢脉冲MAG焊接头的组织与性能. 热加工工艺. 2020(19): 48-51 . 百度学术
    11. 雒卫廷. 螺栓连接结构冲击断裂行为数值模拟. 兵器材料科学与工程. 2020(06): 82-85 . 百度学术
    12. 张楠,田志凌,张书彦,张飞虎. SG90T-9C高强韧性渣气联保药芯焊材的研发. 机械工程材料. 2020(12): 53-61 . 百度学术
    13. 张楠,田志凌,张书彦,董现春,潘辉,张熹. 700 MPa微合金高强钢焊接软化机理及解决方案. 钢铁研究学报. 2019(03): 318-326 . 百度学术
    14. 张楠,田志凌,张书彦,向明,何雨棋,董现春. Q700D热影响粗晶区疲劳寿命与小裂纹扩展分析. 钢铁研究学报. 2019(08): 741-747 . 百度学术
    15. 俞照辉,严红革,严军辉,文忠,李玮. 热影响区连续孔隙状裂纹的表征及产生机理. 焊接学报. 2019(05): 84-88+164-165 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  458
  • HTML全文浏览量:  6
  • PDF下载量:  132
  • 被引次数: 19
出版历程
  • 收稿日期:  2018-11-21

目录

    /

    返回文章
    返回