高级检索

组织不均匀性对TA15钛合金电子束焊焊接接头热影响区应变集中的影响

刘畅, 邓彩艳, 龚宝明, 张承泽

刘畅, 邓彩艳, 龚宝明, 张承泽. 组织不均匀性对TA15钛合金电子束焊焊接接头热影响区应变集中的影响[J]. 焊接学报, 2019, 40(9): 49-52,81. DOI: 10.12073/j.hjxb.2019400234
引用本文: 刘畅, 邓彩艳, 龚宝明, 张承泽. 组织不均匀性对TA15钛合金电子束焊焊接接头热影响区应变集中的影响[J]. 焊接学报, 2019, 40(9): 49-52,81. DOI: 10.12073/j.hjxb.2019400234
LIU Chang, DENG Caiyan, GONG Baoming, ZHANG Chengze. Effects of microstructure inhomogeneity on strain concentration of heat affected zone of TA15 titanium alloy electron beam weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 49-52,81. DOI: 10.12073/j.hjxb.2019400234
Citation: LIU Chang, DENG Caiyan, GONG Baoming, ZHANG Chengze. Effects of microstructure inhomogeneity on strain concentration of heat affected zone of TA15 titanium alloy electron beam weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 49-52,81. DOI: 10.12073/j.hjxb.2019400234

组织不均匀性对TA15钛合金电子束焊焊接接头热影响区应变集中的影响

基金项目: 国家自然科学基金项目(51305295);教育部博士点基金资助项目(20130032120006)

Effects of microstructure inhomogeneity on strain concentration of heat affected zone of TA15 titanium alloy electron beam weld joint

  • 摘要: 通过对TA15钛合金电子束焊焊接接头热影响区进行纳米压痕试验和小试样拉伸试验,结合基于组织的有限元模拟,研究了热影响区中α相和α'相不均匀性对热影响区应变集中的影响. 结果表明,α'相的屈服强度和加工硬化系数均高于α相,α'相是热影响区中较“硬”的组织,α相是热影响区中较“软”的组织,两种组织具有不同的力学性能,因此热影响区组织具有不均匀性. 组织不均匀性导致其细观应力应变分布不均匀,α'相承受较高的应力而α相有较大的应变,从而引起局部塑性变形的不协调,最终形成沿α相的塑性应变集中带.
    Abstract: The effects of inhomogeneity of α phase and α' phase on strain concentration of heat affected zone of TA15 titanium alloy electron beam weld joint were investigated through instrumented nano-indentation test and tensile test of small specimens combined with the microstructure-based finite element method. The results showed that the yield strength and the hardening exponent of α' phase were higher than α phase. The α' phase was the "harder" microstructure, while the phase is the "softer" microstructure. Two phases had different mechanical properties, so the microstructures of heat affected zone were inhomogeneous. The inhomogeneity of microstructure resulted in the inhomogeneity of stress and strain. The α' phase had higher stress while the α phase had higher strain, which caused the incongruity of plastic deformation and eventually led to the plastic strain concentration bands along α phase.
  • [1] 高奇,廖志谦,蒋鹏,等.大厚度钛合金的电子束焊接技术研究现状[J].材料开发与应用, 2018, 33(2):122-133 Gao Qi, Liao Zhiqian, Jiang Peng, et al. The research status of electron beam welding of titanium alloys with large thickness[J]. Development and Application of Materials, 2018, 33(2):122-133
    [2] 黄锋,赵刚要,帅歌旺,等. TC4钛合金高真空电子束焊接工艺研究[J].热加工工艺, 2018, 1(2):45-48 Huang Feng, Zhao Gangyao, Shuai Gewang, et al. The study on high vacuum electron beam welding technology of TC4 titanium alloy[J]. Hot Working Technology, 2018, 1(2):45-48
    [3] 王利发,刘建中,胡本润. TA15钛合金电子束焊焊接接头力学性能[J].焊接学报, 2007, 28(1):97-100 Wang Lifa, Liu Jianzhong, Hu Benrun. Mechanical properties of TA15 titanium alloy electron beam welding joint[J]. Transactions of the China Welding Institution, 2007, 28(1):97-100
    [4] 龚玉斌,王善林,李娟,等. TC4厚板钛合金真空电子束焊焊接接头的组织演变[J].焊接学报, 2017, 38(9):91-96 Gong Yubin, Wang Shanlin, Li Juan, et al. Microstructure evolution of thick TC4 titanium alloy vacuum electron beam welded joint[J]. Transactions of the China Welding Institution, 2017, 38(9):91-96
    [5] Zhang Y, Zhang H, Zhu Z, et al. Microstructure properties and first principles calculation of titanium alloy/steel by Nd:YAG laser self-fluxing welding[J]. China Welding, 2018, 27(3):5-14.
    [6] Ji Z, Yang H, Li H. Predicting the effects of microstructural features on strain localization of a two-phase titanium alloy[J]. Materials&Design, 2015, 87:171-180.
    [7] Sun X, Choi K S, Liu W N, et al. Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. International Journal of Plasticity, 2009, 25(10):1888-1909.
    [8] Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume[J]. Computational Materials Science, 2012, 65(65):197-202.
    [9] Choi K S, Liu W N, Sun X, et al. Influence of martensite mechanical properties on failure mode and ductility of dual-phase steels[J]. Metallurgical and Materials Transactions A, 2009, 40(4):796-809.
    [10] Zhang C, Gong B, Deng C, et al. Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties[J]. Materials Science and Engineering A, 2017, 685:310-316.
    [11] Zhang C, Gong B, Deng C, et al. Orientation dependence of deformation and failure in a C-Mn weld metal[J]. Journal of Materials Processing Tech., 2017, 250:163-171.
    [12] Seok M Y, Kim Y J, Choi I C, et al. Predicting flow curves of two-phase steels from spherical nanoindentation data of constituent phases:Isostrain method vs. non-isostrain method[J]. International Journal of Plasticity, 2014, 59(10):108-118.
计量
  • 文章访问数:  453
  • HTML全文浏览量:  12
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-04

目录

    /

    返回文章
    返回