高级检索

基于温度函数法的铝合金电弧增材制造残余应力与变形数值模拟

贾金龙, 赵玥, 董明晔, 吴爱萍, 李权

贾金龙, 赵玥, 董明晔, 吴爱萍, 李权. 基于温度函数法的铝合金电弧增材制造残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226
引用本文: 贾金龙, 赵玥, 董明晔, 吴爱萍, 李权. 基于温度函数法的铝合金电弧增材制造残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226
JIA Jinlong, ZHAO Yue, DONG Mingye, WU Aiping, LI Quan. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226
Citation: JIA Jinlong, ZHAO Yue, DONG Mingye, WU Aiping, LI Quan. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226

基于温度函数法的铝合金电弧增材制造残余应力与变形数值模拟

基金项目: 国家重点研发计划项目(2018YFB1106000);航天一院高校联合创新基金(CALT201709);清华大学自主科研计划

Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method

  • 摘要: 电弧增材制造是制造大型复杂铝合金部件的新方法,但残余应力和变形对制造件的性能有重要影响. 建立了铝合金电弧增材制造件残余应力和变形的顺序热-力耦合有限元模型,采用移动热源法计算了增材过程的温度场,根据峰值温度的分布和演变特征确定了温度函数的提取方案,并分别采用移动热源法和温度函数法进行了残余应力和变形计算.结果表明,1段,3段,5段温度函数法分别将力学分析时间缩短91%,79%,63%,残余应力和基板变形误差均在20%以内,在满足计算精度的前提下显著提高了计算效率,为大型铝合金电弧增材制造件残余应力与变形的预测提供了途径.
    Abstract: Wire arc additive manufacture (WAAM) is a new way to fabricate large-scale complex aluminum alloy components, but the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source (MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function (STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively. The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts.
  • [1] Debroy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2017, 92:112-224.
    [2] Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5):1-46.
    [3] Yang Q, Pu Z, Lin C, et al. Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing[J]. Additive Manufacturing, Part B, 2016, 12:169-177.
    [4] Dunbar A J, Denlinger E R, Heigel J, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, Part A, 2016, 12:25-30.
    [5] Biegler M, Graf B, Rethmeier M. In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018, 20:101-110.
    [6] Xie R, Zhao Y, Chen G, et al. The full-field strain distribution and the evolution behavior during additive manufacturing through in-situ observation[J]. Materials&Design, 2018, 150:49-54.
    [7] Michaleris P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes[J]. Finite Elements in Analysis and Design, 2014, 86(13):51-60.
    [8] Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12):3315-3322.
    [9] Ding J, Colegrove P, Mehnen J, et al. A computationally efficient finite element model of wire and arc additive manufacture[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):227-236.
    [10] 陈嵩涛,段庆林,王依宁,等.选区激光烧结过程传热分析的高效无网格法[J].机械工程学报, 2019, 55(7):135-146 Chen Songtao, Duan Qinglin, Wang Yining, et al. Efficient meshfree method for heat conduction in selective laser sintering process[J]. Journal of Mechanical Engineering, 2019, 55(7):135-146
    [11] Michaleris P, Zhang L, Bhide S R, et al. Evaluation of 2D, 3D and applied plastic strain methods for predicting buckling welding distortion and residual stress[J]. Science and Technology of Welding and Joining, 2006, 11(6):707-716.
    [12] 鄢东洋,史清宇,吴爱萍,等.焊接数值模拟中以温度为控制变量的高效算法[J].焊接学报, 2009, 30(8):77-80 Yan Dongyang, Shi Qingyu, Wu Aiping, et al. A high-efficiency welding simulation method based on welding temperature[J]. Transactions of the China Welding Institution, 2009, 30(8):77-80
    [13] 李艳军,吴爱萍,刘德博,等. 2219铝合金VPTIG焊接残余应力的数值分析[J].清华大学学报自然科学版, 2016(10):1037-1041 Li Yanjun, Wu Aiping, Liu Debo, et al. Numerical simulation of welding residual stresses in VPTIG joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University (Science and Technology), 2016(10):1037-1041
  • 期刊类型引用(13)

    1. 王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 . 百度学术
    2. 周志杰,池元清,蔡舒鹏,张琪,唐雪松,张永康. 应力迭代法重构电弧增材AA7075铝合金薄壁件残余应力场研究. 计算机集成制造系统. 2024(03): 1127-1137 . 百度学术
    3. 李坤,左春林,廖若冰,吉辰,蒋斌,潘复生. 增材制造铝合金残余应力研究现状及展望. 航空学报. 2024(12): 6-30 . 百度学术
    4. 曹流,朱民富,李峻荣,张沁丹. 基于连续逐层添加的金属增材制造热-力耦合行为数值模拟研究. 铸造. 2024(08): 1065-1072 . 百度学术
    5. 肖罡,张喜龙,项菲菲,郭鹏程,项忠珂,杨钦文. 选区激光熔化Al-Mg-Sc-Zr铝合金成形过程数值模拟. 塑性工程学报. 2024(11): 112-122 . 百度学术
    6. 夏玉峰,滕海灏,张雪,郑德宇,权国政. Ti-6Al-4V合金电弧熔丝增材的组织性能研究进展. 重庆大学学报. 2022(04): 87-99 . 百度学术
    7. 李岩,苏辰,张冀翔. 电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势. 机械制造文摘(焊接分册). 2022(01): 14-20 . 百度学术
    8. 王强,贾金龙,苏振,康举,赵玥,吴爱萍. 铝合金WAAM筒形构件变形演变的有限元计算. 焊接技术. 2022(04): 1-6+113 . 百度学术
    9. 权国政,杨焜,盛雪,余炎泽. 电弧熔丝增材制造残余应力控制方法综述. 塑性工程学报. 2021(11): 1-10 . 百度学术
    10. 李春凤,肖笑,尹玉祥,李晨,张柯柯. TIG电弧增材熔池行为的数值模拟研究现状. 材料热处理学报. 2020(07): 25-32 . 百度学术
    11. 赵鹏康,唐成,蒲尊严,李言,李淑娟. TIG电弧增材制造5356铝合金微观组织与拉伸性能. 焊接学报. 2020(05): 65-70+77+101 . 本站查看
    12. 王浩宇,荣鹏,徐伟伟,高川云,虞文军,庞盛永. 飞机栅格零件SLM成形过程的变形演化仿真研究. 航空制造技术. 2020(22): 70-75 . 百度学术
    13. 李岩,苏辰,张冀翔. 电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势. 焊接. 2020(09): 31-37+63 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  743
  • HTML全文浏览量:  21
  • PDF下载量:  283
  • 被引次数: 27
出版历程
  • 收稿日期:  2019-02-27

目录

    /

    返回文章
    返回