高级检索

基于内聚力单元与XFEM的热障涂层失效分析

戴晨煜, 钟舜聪, 唐长明, 伏喜斌, 黄学斌

戴晨煜, 钟舜聪, 唐长明, 伏喜斌, 黄学斌. 基于内聚力单元与XFEM的热障涂层失效分析[J]. 焊接学报, 2019, 40(8): 138-143. DOI: 10.12073/j.hjxb.2019400222
引用本文: 戴晨煜, 钟舜聪, 唐长明, 伏喜斌, 黄学斌. 基于内聚力单元与XFEM的热障涂层失效分析[J]. 焊接学报, 2019, 40(8): 138-143. DOI: 10.12073/j.hjxb.2019400222
DAI Chenyu, ZHONG Shuncong, TANG Changming, FU Xinbin, HUANG Xuebin. Failure analysis of thermal barrier coatings based on cohesive element and XFEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 138-143. DOI: 10.12073/j.hjxb.2019400222
Citation: DAI Chenyu, ZHONG Shuncong, TANG Changming, FU Xinbin, HUANG Xuebin. Failure analysis of thermal barrier coatings based on cohesive element and XFEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 138-143. DOI: 10.12073/j.hjxb.2019400222

基于内聚力单元与XFEM的热障涂层失效分析

基金项目: 国家自然科学基金资助项目(51675103),机械系统与振动国家重点实验室开放课题基金资助项目(MSV-2018-07),上海市自然科学基金资助项目(18ZR1414200),福建省质量技术监督局科技项目(FJQI2016050)

Failure analysis of thermal barrier coatings based on cohesive element and XFEM

  • 摘要: 为了更好的理解热障涂层的失效机理,文中运用ABAQUS有限元软件来分析热障涂层的失效情况,使用内聚力单元和扩展有限元(XFEM)两种方法研究热障涂层TGO界面开裂与陶瓷涂层(TC)和氧化层(TGO)内随机裂纹的萌生与扩展,研究竖直裂纹与水平裂纹的关系.结果表明,热障涂层TGO界面的开裂首先出现在TGO/TBC波谷处.陶瓷涂层和氧化层内随机裂纹的萌生同样发生在TGO/TBC波谷处.竖直裂纹的存在可以抑制水平裂纹的萌生与扩展,且其在TGO/TBC波谷处的扩展长度比在TGO/TBC波峰处的扩展长度更长,说明TGO/TBC波谷区域是个危险区域,在此区域容易引发裂纹的萌生与扩展.
    Abstract: In order to better understand the failure mechanism of the thermal barrier coating, the ABAQUS finite element software was used to analyze the failure of the thermal barrier coating. Cohesive element and extended finite element (XFEM) were used to study the cracking of the TGO interface in the thermal barrier coating and the initiation and propagation of random cracks in the ceramic coating (TC) and the oxidation layer (TGO). The relationship between vertical cracks and horizontal cracks was studied. The results shown that the cracking of the TGO interface of the thermal barrier coating first occurred at the TGO/TBC trough, and the initiation of the random cracks in the ceramic coating and the oxidation layer also occurred at the TGO/TBC trough. The existence of the vertical crack could inhibit the initiation and propagation of the horizontal crack, and the propagation lengths at the TGO/TBC trough was longer than that of the TGO/TBC crest. It indicated that the TGO/TBC trough area was a dangerous area, which was likely to cause crack initiation and propagation in this area.
  • [1] 薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报, 2018, 38(2):10-20 Xue Zhaolu, Guo Hongbo, Gong Shengkai, et al. Novel ceramic materials for thermal barrier coatings[J]. Journal of Aeronautical Materials, 2018, 38(2):10-20
    [2] 韩志勇,张华,王志平,等. TGO界面特征对热障涂层残余应力的影响[J].焊接学报, 2012, 33(12):33-36 Han Zhiyong, Zhang Hua, Wang Zhiping, et al. Effect of interfacial characteristics of TGO on residual stress of thermal barrier coatings[J]. Transactions of the China Welding Institution, 2012, 33(12):33-36
    [3] 张玉娟,张玉驰,孙晓峰,等.热障涂层的发展现状[J].材料保护, 2004, 37(6):26-29 Zhang Yujuan, Zhang Yuchi, Sun Xiaofeng, et al. Development status of thermal barrier coatings[J]. Materials Protection, 2004, 37(6):26-29
    [4] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
    [5] Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-553.
    [6] 曹学强.热障涂层材料(精)[M].北京:科学出版社, 2007.
    [7] 周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报, 2010, 31(5):504-531 Zhou Yichun, Liu Qixing, Yang Li, et al. Failure mechanism and life prediction of thermal barrier coatings[J]. Acta Mechanica Solida Sinica, 2010, 31(5):504-531
    [8] Bhatnagar H, Ghosh S, Walter M E. A parametric study of damage initiation and propagation in EB-PVD thermal barrier coatings[J]. Mechanics of Materials, 2010, 42(1):96-107.
    [9] Caliez M, Chaboche J L, Feyel F, et al. Numerical simulation of EBPVD thermal barrier coatings spallation[J]. Acta Materialia, 2003, 51(4):1133-1141.
    [10] Soulignac R, Maurel V, Rémy L, et al. Cohesive zone modelling of thermal barrier coatings interfacial properties based on three-dimensional observations and mechanical testing[J]. Surface&Coatings Technology, 2013, 237:95-104.
    [11] Hille T S, Nijdam T J, Suiker A S J, et al. Damage growth triggered by interface irregularities in thermal barrier coatings[J]. Acta Materialia, 2009, 57(9):2624-2630.
    [12] Hille T S, Suiker A S J, Turteltaub S. Microcrack nucleation in thermal barrier coating systems[J]. Engineering Fracture Mechanics, 2009, 76(6):813-825.
    [13] Ranjbar-Far M, Absi J, Mariaux G, et al. Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies[J]. Materials&Design, 2011, 32(10):4961-4969.
    [14] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solid, 1960, 8(2):100-104.
    [15] Barenblatt G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics&Mechanics, 1959, 23(3):622-636.
    [16] 付宾,杨晓翔.炭黑颗粒填充橡胶复合材料界面脱粘数值分析[J].福州大学学报(自然科学版), 2018, 46(3):386-390 Fu Bin, Yang Xiaoxiang. Numerical analysis of interfacial debonding of carbon black particle filled rubber composites[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(3):386-390
    [17] Pan D, Chen M W, Wright P K, et al. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling[J]. Acta Materialia, 2003, 51(8):2205-2217.
    [18] Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials&Design, 2010, 31(2):772-781.
    [19] Ranjbar-Far M, Absi J, Shahidi S, et al. Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system[J]. Materials&Design, 2011, 32(2):728-735.
    [20] 陈宇慧,陈丹阳,钟舜聪,等.基于热-结构耦合等离子喷涂热障涂层循环应力分布[J].机电工程, 2013, 30(8):905-908 Chen Yuhui, Chen Danyang, Zhong Shuncong, et al. Based on the cyclic stress distribution of thermal-structural coupled plasma spraying thermal barrier coatings[J]. Journal of Mechanical&Electrical Engineering, 2013, 30(8):905-908
    [21] Al-Athel K, Loeffel K, Liu H, et al. Modeling decohesion of a top-coat from a thermally-growing oxide in a thermal barrier coating[J]. Surface&Coatings Technology, 2013, 222(6):68-78.
    [22] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1995, 45(5):601-620.
    [23] Melenk J M, Babuska I. Approximation with harmonic and generalized harmonic polynomials in the partition of unity method[J]. Computer Assisted Mechanics&Engineering Sciences, 1997, 4(3):607-632.
    [24] Kyaw S T, Jones I A, Hyde T H. Simulation of failure of air plasma sprayed thermal barrier coating due to interfacial and bulk cracks using surface-based cohesive interaction and extended finite element method[J]. Journal of Strain Analysis for Engineering Design, 2016, 51(2):132-143.
    [25] Bäker M. Finite element simulation of interface cracks in thermal barrier coatings[J]. Computational Materials Science, 2012, 64(3):79-83.
    [26] Yu Q M, Zhou H L, Wang L B. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International, 2016, 42(7):8338-8350.
    [27] Zhe L U, Kim M S, Myoung S W, et al. Thermal stability and mechanical properties of thick thermal barrier coatings with vertical type cracks[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:s29-s35.
  • 期刊类型引用(4)

    1. 王鹏博,张永强,惠亚军,王泽阳,伊日贵,王晓雄,张郢. 车厢结构用冷轧马氏体钢电阻点焊工艺性能研究. 电焊机. 2024(05): 117-123 . 百度学术
    2. 刘岩,刘兆真,陈永满,贺春林,鞠小龙. DP980双相钢CMT焊接接头组织及性能. 焊接. 2022(04): 48-53+64 . 百度学术
    3. 高天洋,徐海卫,韩赟,田亚强,李红斌,陈连生. 基于相变产物构建DP1180相变动力学方程研究. 钢铁研究学报. 2022(10): 1136-1144 . 百度学术
    4. 邵天巍,薛俊良,万占东,郭伟. QP980-DP980异种先进高强钢激光焊接头微观组织及力学性能. 焊接. 2019(07): 5-9+65 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  383
  • HTML全文浏览量:  9
  • PDF下载量:  44
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-07-19

目录

    /

    返回文章
    返回