[1] |
薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报, 2018, 38(2):10-20 Xue Zhaolu, Guo Hongbo, Gong Shengkai, et al. Novel ceramic materials for thermal barrier coatings[J]. Journal of Aeronautical Materials, 2018, 38(2):10-20
|
[2] |
韩志勇,张华,王志平,等. TGO界面特征对热障涂层残余应力的影响[J].焊接学报, 2012, 33(12):33-36 Han Zhiyong, Zhang Hua, Wang Zhiping, et al. Effect of interfacial characteristics of TGO on residual stress of thermal barrier coatings[J]. Transactions of the China Welding Institution, 2012, 33(12):33-36
|
[3] |
张玉娟,张玉驰,孙晓峰,等.热障涂层的发展现状[J].材料保护, 2004, 37(6):26-29 Zhang Yujuan, Zhang Yuchi, Sun Xiaofeng, et al. Development status of thermal barrier coatings[J]. Materials Protection, 2004, 37(6):26-29
|
[4] |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
|
[5] |
Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-553.
|
[6] |
曹学强.热障涂层材料(精)[M].北京:科学出版社, 2007.
|
[7] |
周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报, 2010, 31(5):504-531 Zhou Yichun, Liu Qixing, Yang Li, et al. Failure mechanism and life prediction of thermal barrier coatings[J]. Acta Mechanica Solida Sinica, 2010, 31(5):504-531
|
[8] |
Bhatnagar H, Ghosh S, Walter M E. A parametric study of damage initiation and propagation in EB-PVD thermal barrier coatings[J]. Mechanics of Materials, 2010, 42(1):96-107.
|
[9] |
Caliez M, Chaboche J L, Feyel F, et al. Numerical simulation of EBPVD thermal barrier coatings spallation[J]. Acta Materialia, 2003, 51(4):1133-1141.
|
[10] |
Soulignac R, Maurel V, Rémy L, et al. Cohesive zone modelling of thermal barrier coatings interfacial properties based on three-dimensional observations and mechanical testing[J]. Surface&Coatings Technology, 2013, 237:95-104.
|
[11] |
Hille T S, Nijdam T J, Suiker A S J, et al. Damage growth triggered by interface irregularities in thermal barrier coatings[J]. Acta Materialia, 2009, 57(9):2624-2630.
|
[12] |
Hille T S, Suiker A S J, Turteltaub S. Microcrack nucleation in thermal barrier coating systems[J]. Engineering Fracture Mechanics, 2009, 76(6):813-825.
|
[13] |
Ranjbar-Far M, Absi J, Mariaux G, et al. Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies[J]. Materials&Design, 2011, 32(10):4961-4969.
|
[14] |
Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solid, 1960, 8(2):100-104.
|
[15] |
Barenblatt G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics&Mechanics, 1959, 23(3):622-636.
|
[16] |
付宾,杨晓翔.炭黑颗粒填充橡胶复合材料界面脱粘数值分析[J].福州大学学报(自然科学版), 2018, 46(3):386-390 Fu Bin, Yang Xiaoxiang. Numerical analysis of interfacial debonding of carbon black particle filled rubber composites[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(3):386-390
|
[17] |
Pan D, Chen M W, Wright P K, et al. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling[J]. Acta Materialia, 2003, 51(8):2205-2217.
|
[18] |
Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials&Design, 2010, 31(2):772-781.
|
[19] |
Ranjbar-Far M, Absi J, Shahidi S, et al. Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system[J]. Materials&Design, 2011, 32(2):728-735.
|
[20] |
陈宇慧,陈丹阳,钟舜聪,等.基于热-结构耦合等离子喷涂热障涂层循环应力分布[J].机电工程, 2013, 30(8):905-908 Chen Yuhui, Chen Danyang, Zhong Shuncong, et al. Based on the cyclic stress distribution of thermal-structural coupled plasma spraying thermal barrier coatings[J]. Journal of Mechanical&Electrical Engineering, 2013, 30(8):905-908
|
[21] |
Al-Athel K, Loeffel K, Liu H, et al. Modeling decohesion of a top-coat from a thermally-growing oxide in a thermal barrier coating[J]. Surface&Coatings Technology, 2013, 222(6):68-78.
|
[22] |
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1995, 45(5):601-620.
|
[23] |
Melenk J M, Babuska I. Approximation with harmonic and generalized harmonic polynomials in the partition of unity method[J]. Computer Assisted Mechanics&Engineering Sciences, 1997, 4(3):607-632.
|
[24] |
Kyaw S T, Jones I A, Hyde T H. Simulation of failure of air plasma sprayed thermal barrier coating due to interfacial and bulk cracks using surface-based cohesive interaction and extended finite element method[J]. Journal of Strain Analysis for Engineering Design, 2016, 51(2):132-143.
|
[25] |
Bäker M. Finite element simulation of interface cracks in thermal barrier coatings[J]. Computational Materials Science, 2012, 64(3):79-83.
|
[26] |
Yu Q M, Zhou H L, Wang L B. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International, 2016, 42(7):8338-8350.
|
[27] |
Zhe L U, Kim M S, Myoung S W, et al. Thermal stability and mechanical properties of thick thermal barrier coatings with vertical type cracks[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:s29-s35.
|