高级检索

温度场对电弧喷涂热应力的影响

官大庶, 方思妍, 周志丹, 陈富强, 陈蒙蒙

官大庶, 方思妍, 周志丹, 陈富强, 陈蒙蒙. 温度场对电弧喷涂热应力的影响[J]. 焊接学报, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217
引用本文: 官大庶, 方思妍, 周志丹, 陈富强, 陈蒙蒙. 温度场对电弧喷涂热应力的影响[J]. 焊接学报, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217
GUAN Dashu, FANG Siyan, ZHOU Zhidan, CHEN Fuqiang, CHEN Mengmeng. Effect of temperature field on the thermal stress of arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217
Citation: GUAN Dashu, FANG Siyan, ZHOU Zhidan, CHEN Fuqiang, CHEN Mengmeng. Effect of temperature field on the thermal stress of arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217

温度场对电弧喷涂热应力的影响

基金项目: 广东大学生科技创新培育专项资金项目(pdjh2019b0771)

Effect of temperature field on the thermal stress of arc spraying

  • 摘要: 基于热力学热传导原理和材料力学力和力矩的平衡原理,提出了考虑温度场的电弧快速成形涂层和基体热应力分析方法,能计算涂层成形后,由于自身温度降低以及向基体热传导产生温度场变化引起涂层和基体的热应力.借助广义热传导方程并赋予给定初始和边界条件,推导了基体厚度方向各位置温度分布函数,将推导的温度分布函数结合温度应变方程、力和力矩平衡方程推导了涂层和基体由于温度场变化产生的热应力理论计算方法.结果表明,热应力理论计算方法较好反映喷涂成形后涂层和基体间热应力分布规律,能较好控制涂层的质量,实现厚成形.
    Abstract: Basing on heat conduction principle of thermodynamics and the equilibrium principle of force and torque in mechanics of materials, one way of thermal stress analysis of an arc rapid forming coating and substrate considering temperature field was proposed to calculate the thermal stress of the coating and the substrate, which caused respectively by the decrease of temperature and the change of temperature field due to the heat conduction of substrate, resulting from the high temperature coating. Basing on generalized heat conduction equation assigned to both initial and boundary conditions, temperature distribution function at different positions in the direction of matrix thickness was derived. On the basis of the temperature distribution function, the temperature strain equation, the force and moment equation, the theoretical formula of thermal stress along with temperature field for coating and substrate was derived. The results showed that the thermal stress distribution between coating and matrix after spray forming can better reflected, also the quality of the coating to achieve thick coating can better controlled by this method.
  • [1] Chen Y X, Liang X B, Liu Y, et al. Elastoplastic analysis of process induced residual stresses in thermally sprayed coatings[J]. Journal of Applied Physics, 2010, 108(1):013517.
    [2] Kuroda S, Clyne T W. The origin and quantification of the quenching stress associated with splat cooling during spray deposition[C]//2nd Plasma Technik Symposium, Wohlen, 1991:273-284.
    [3] Kuroda S, Clyne T W. The quenching stress in thermally sprayed coatings[J]. Thin Solid Films, 1991, 200:49-66.
    [4] Matejicek J, Sampath S, Brand P C, et al. Quenching, thermal and residual stress in plasma sprayed deposits:NiCrA1Y and YSZ coatings[J]. Acta Materialia, 1999, 47(2):607-617.
    [5] Stoney G G. The tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society A, 1909, A82:172-175.
    [6] Wenzelburger M, Escribano M. Modeling of thermally sprayed coatings on light metal substrates:layer growth and residual stress formation[J]. Surface and Coatings Technology, 2004, 180-181:429-435.
    [7] Hsueh C H. Thermal stresses in elastic multilayer systems[J]. Thin Solid Films, 2002, 418:182-188.
    [8] Gan Z H, Wah Ng H. Experiments and inelastic finite element analyses of plasma sprayed graded coating under cyclic thermal shock[J]. Materials Science and Engineering A, 2004, 385:314-324.
    [9] Giannakopoulos A E, Suresh S, Finot M, et al. Elastoplastic analysis of thermal cycling:layered materials with compositional gradients[J]. Acta Metallurgica Materialia, 1995, 43(4):1335-1385.
    [10] Stokes J, Looney L. FEA of residual stress during hvof thermal spraying[J]. Journal of Materials Engineering and Performance, 2009, 18(1):21-25.
    [11] Stokes J, Looney L. Predicting quenching and cooling stresses within HVOF deposits[J]. Journal of Thermal Spray Technology, 2008, 17(5-6):908-914.
    [12] Clyne T W. Interfacial effects in particulate, fibrous and layered composite materials[J]. Key Engineering Materials, 1996, 116-117:307-330.
    [13] Clyne T W, Gill S C. Residual stresses in thermal spray coatings and their effect on interfacial adhesion:a review of recent worn[J]. Journal of Thermal Spray Technology, 1996, 5(4):401-418.
    [14] Tsui Y C, Clyne T W. An analytical model for predicting residual stresses in progressively deposited coatings, Part 2:Cylindrical geometry[J]. Thin Solid Films, 1997, 306:34-51.
    [15] Tsui Y C, Clyne T W. An analytical model for predicting residual stresses in progressively deposited coatings, Part 1:Planar geometry[J]. Thin Solid Films, 1997, 306:23-33.
    [16] Hu Y Y, Huang W M. Elastic and elastic-plastic analysis of multilayer thin films:Closed-form solutions[J]. Journal of Applied Physics, 2004, 96:4154-4160.
    [17] Zhang X C. Residual stresses in the ealstoplastic multilayer thin film structures:The cases of Si/A1 bilayer and Si/Al/SiO2 trilayer structures[J]. Journal of Applied Physics, 2008, 103:073505.
    [18] 陶军,李冬青,王明罡,等.焊接过程热传导系数反演法[J].焊接学报, 2004, 25(6):87-88, 123 Tao Jun, Li Dongqing, Wang Minggang, et al. Inversion method of heat conduction coefficient in welding process[J]. Transactions of the China Welding Institution, 2004, 25(6):87-88, 123
计量
  • 文章访问数:  444
  • HTML全文浏览量:  9
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-17

目录

    /

    返回文章
    返回