高级检索

核级316LN不锈钢焊接接头的组织结构变化

李兆登, 崔振东, 王维珍, 尹建华

李兆登, 崔振东, 王维珍, 尹建华. 核级316LN不锈钢焊接接头的组织结构变化[J]. 焊接学报, 2019, 40(8): 89-95. DOI: 10.12073/j.hjxb.2019400214
引用本文: 李兆登, 崔振东, 王维珍, 尹建华. 核级316LN不锈钢焊接接头的组织结构变化[J]. 焊接学报, 2019, 40(8): 89-95. DOI: 10.12073/j.hjxb.2019400214
LI Zhaodeng, CUI Zhendong, WANG Weizhen, YIN Jianhua. Microstructure of nuclear grade 316LN stainless steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 89-95. DOI: 10.12073/j.hjxb.2019400214
Citation: LI Zhaodeng, CUI Zhendong, WANG Weizhen, YIN Jianhua. Microstructure of nuclear grade 316LN stainless steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 89-95. DOI: 10.12073/j.hjxb.2019400214

核级316LN不锈钢焊接接头的组织结构变化

基金项目: 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2016-G4,K-JBYWF-2017-T04)

Microstructure of nuclear grade 316LN stainless steel welded joint

  • 摘要: 通过光学显微镜、扫描电镜、透射电镜、电子背散射衍射、X射线衍射仪和硬度测量仪等方法对核级316LN焊接接头不同区域的组织结构进行了系统研究,结果表明,焊缝区冷却凝固模式以铁素体-奥氏体(F-A)为主,残留的铁素体以蠕虫状或板条状形式存在奥氏体基体上,含量约为13.66%.熔合区宽度不统一,凝固模式以奥氏体-铁素体(A-F)为主,并且具有明显的外延生长趋势;热影响区发生不同程度的再结晶、晶粒长大和变形行为,Σ3晶界比例降低,而硬度和残余应力增大.
    Abstract: Optical microscope, scanning electron microscope, transmission electron microscope, electron back scattering diffraction, X-ray diffraction and hardness measurement were used to investigate the microstructure of the different zones in nuclear grade 316LN welded joints. The results show that, the solidfication type of weld zone was dominated by ferrite-austenite(F-A) mode, and the content of vermicular-or lath-like residual ferrite existed in the austenite matrix was 13.66%. The fusion zone solidficated in the form of austenite-ferrite(A-F) mode, and the width of which was not uniform. Moreover, the fusion zone exhibited the epitaxial growth tendency. Recrystallization, grain growth and deformation behavior with different degrees occurred in the heat-affected zone. Meanwhile, less Σ3 grain boundary, high hardness and residual stress were found in the heat-affected zone.
  • [1] Tabatabaeipour S M, Honarvar A. Comparative evaluation of ultrasonic testing of AISI 316L welds made by shielded metal arc welding and gas tungsten arc welding processes[J]. Journal of Materials Processing Technology, 2010, 210(8):1043-1050.
    [2] 黄毓晖,杨博,轩福贞,等. 316L不锈钢扩散焊接头在酸性氯化钠溶液中的应力腐蚀行为[J].焊接学报, 2011, 32(7):67-70 Huang Yuhui, Yang Bo, Xuan Fuzhen, et al. Stress corrosion behavior of diffusion bonding joints of 316L stainless steel in environment of acid NaCl solution[J]. Transactions of the China Welding Institution, 2011, 32(7):67-70
    [3] Kim S J, Hong S G, Oh M. Effect of metallurgical factors on the pitting corrosion behavior of super austenitic stainless steel weld in an acidic chloride environment[J]. Journal of Materials Research, 2017, 32:1343-1346.
    [4] 王永强,杨滨,武焕春,等.揭秘核电材料-核电站一回路主管道材料及其制备工艺[J].金属世界, 2013(1):37-41 Wang Yongqiang, Yang Bin, Wu Huanchun, et al. Uncovered the truth of nuclear power material-materials of primary coolant pipe in nuclear power plants and their processing[J]. Metal World, 2013(1):37-41
    [5] Dadfar M, Fathi M H, Karimzadeh F, et al. Effect of TIG welding on corrosion behavior of 316L stainless steel[J]. Materials Letters, 2007, 61(11-12):2343-2346.
    [6] Li K, Li D, Liu D, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel[J]. Applied Surface Science, 2015, 340:143-145.
    [7] Abe H, Watanabe Y. Role of δ-ferrite in stress corrosion cracking retardation near fusion boundary of 316NG welds[J]. Journal of Nuclear Materials, 2012, 424(1-3):57-61.
    [8] 徐济进.材料硬化模型对316L不锈钢焊接残余应力的影响[J].焊接学报, 2014, 35(3):97-100 Xu Jijin. Effect of material hardening model on welding residual stresses of 316L stainless steel[J]. Transactions of the China Welding Institution, 2014, 35(3):97-100
    [9] Yang K, Zhang Z X, Jiang Y F, et al. Microstructure and corrosion resistance of 304 stainless steel electroslag strip cladding[J]. China Welding, 2016(1):15-20.
    [10] Zhan P L, Tetsuo S, F J M, et al. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water[J]. Corrosion Science, 2011, 53(5):1916-1932.
    [11] Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel[J]. Electrochimica Acta, 2005, 50(6):1391-1403.
    [12] Sánchez-Tovar R, Montañés M T J, García-Antón. Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines[J]. Corrosion Science, 2011, 53(8):2598-2610.
    [13] Kumar D H, Shaktivelu T, Nanda Gopal M, et al. Creep failures in laser welded 316L (N) stainless steel joints[J]. Journal of Materials Science Research, 2013, 2(1):124-128.
    [14] Unnikrisnan R, Idury K S N S, Ismail T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments[J]. Mater. Charact, 2014, 93:10-14.
    [15] Zhang P L, Tetsuo S J, He X, et al. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments[J]. Journal of Nuclear Materials, 2012, 423(1-3):28-39.
    [16] Zhang P L, Jun J C, Tetsuo S J, et al. Characterization of microstructure, local deformation and microchemistry in Alloy 600 heat-affected zone and stress corrosion cracking in high temperature water[J]. Corrosion Science, 2012, 58:211-228.
    [17] Zhang P L, Tetsuo S J Yoichi T, et al. Effects of loading mode and water chemistry on stress corrosion crack growth behavior of 316L HAZ and weld metal materials in high temperature pure water[J]. Corrosion Science, 2008, 50(3):625-638.
    [18] 邸新杰,王玉玮,郑礼刚,等.长期服役对316L不锈钢HAZ组织及性能的影响[J].焊接学报, 2016, 37(11):75-78 Di xingjie, Wang Yuwei, Zheng Ligang, et al. Effect of long-time service on microstructure and properties of weld HAZ of 316L stainless steel[J]. Transactions of the China Welding Institution, 2016, 37(11):75-78
  • 期刊类型引用(20)

    1. 马霄锋,杨冠华,高超,钮旭晶,王玮彤. 6005A-T6铝合金对搭接FSW接头微观组织与力学性能. 焊接技术. 2025(03): 8-13+145 . 百度学术
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 蹇文轩,丛孟启,雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展. 机械工程学报. 2024(08): 48-64 . 百度学术
    4. 冯家铖,宫文彪,鞠川,李于朋,孙雨萌,朱芮. 2024铝合金双轴肩搅拌摩擦焊接头热循环及组织特征. 吉林大学学报(工学版). 2024(11): 3184-3191 . 百度学术
    5. 邓建峰,郭伟强,徐晓霞,王博,灰辉,窦思忠,黄望业. Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD + Z lap joint. China Welding. 2023(01): 46-52 . 百度学术
    6. 谢宇,李兴帅,付炳欣. 轨道交通铝合金车体双轴肩搅拌摩擦焊研究现状与展望. 机车车辆工艺. 2023(03): 18-20+28 . 百度学术
    7. 尹德猛,李充,姚肖洁,郝文波,王崴,杨彦龙. 6082-T6铝合金双轴肩搅拌摩擦焊接头成形及力学性能. 焊接. 2023(06): 38-43 . 百度学术
    8. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
    9. 温泉,李文亚,吴雪猛,任寿伟,赵静. AA6056双轴肩搅拌摩擦焊接头非均匀性分析. 焊接学报. 2023(09): 88-94+134 . 本站查看
    10. 马佳良,曾泽群,孙屹博,杨鑫华. 工艺参数对铝合金搅拌摩擦焊变形和残余应力的影响及优化. 焊接技术. 2022(01): 46-52+114 . 百度学术
    11. 张颖川,马国栋,代鹏,王敬水,金炜. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析. 焊接学报. 2022(06): 88-95+118 . 本站查看
    12. 林森,韩晓辉,李刚卿,王鹏,赵存金,杨志斌. 高速列车铝合金MIG接头应力腐蚀失效研究. 中国安全科学学报. 2022(06): 115-122 . 百度学术
    13. 李帅贞,韩晓辉,吴来军,刘裕航,王鹏,宋晓国,檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响. 材料导报. 2022(17): 157-161 . 百度学术
    14. 赵刚,颜旭,王立梅,柴煜,郝云飞. 焊接工艺参数对10mm厚2219铝合金双轴肩搅拌摩擦焊焊缝质量和性能的影响. 焊接. 2022(12): 13-19 . 百度学术
    15. 李小欣,郑延召,徐仲勋,王晓贞. 焊接参数对5A06铝合金搅拌摩擦焊接头性能的影响. 上海金属. 2021(03): 19-25 . 百度学术
    16. 李充,李朔晗,齐振国,孟祥晨,黄永宪. 对接间隙对双轴肩搅拌摩擦焊接头成形与性能的影响. 焊接. 2021(09): 5-9+27+61 . 百度学术
    17. 李志强,陈辰. 铝合金材料搅拌摩擦焊焊接参数概述. 焊接技术. 2021(11): 1-5 . 百度学术
    18. 方远方,张华,窦程亮. 2A12-T4/7A09-T6铝合金搅拌摩擦焊搭接接头性能分析. 焊接学报. 2020(01): 86-90+101-102 . 本站查看
    19. 李少峰,马成勇,宋志刚,安同邦. 800 MPa级高强钢焊接接头组织及力学性能. 焊接学报. 2020(05): 91-96+102 . 本站查看
    20. 吴进军,吕晋,杜兵,朱宇宏,张林. 基于专利大数据的焊接前沿热点技术挖掘. 焊接. 2019(12): 1-6+65 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  414
  • HTML全文浏览量:  4
  • PDF下载量:  116
  • 被引次数: 27
出版历程
  • 收稿日期:  2018-11-13

目录

    /

    返回文章
    返回