高级检索

TC4厚壁管全位置PAW工艺及接头性能分析

郭春富, 刘帛炎, 董春林, 易江龙

郭春富, 刘帛炎, 董春林, 易江龙. TC4厚壁管全位置PAW工艺及接头性能分析[J]. 焊接学报, 2019, 40(7): 121-126. DOI: 10.12073/j.hjxb.2019400193
引用本文: 郭春富, 刘帛炎, 董春林, 易江龙. TC4厚壁管全位置PAW工艺及接头性能分析[J]. 焊接学报, 2019, 40(7): 121-126. DOI: 10.12073/j.hjxb.2019400193
GUO Chunfu, LIU Boyan, DONG Chunlin, YI Jianglong. All-position plasma arc welding process for thick TC4 tube and mechanical properties of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 121-126. DOI: 10.12073/j.hjxb.2019400193
Citation: GUO Chunfu, LIU Boyan, DONG Chunlin, YI Jianglong. All-position plasma arc welding process for thick TC4 tube and mechanical properties of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 121-126. DOI: 10.12073/j.hjxb.2019400193

TC4厚壁管全位置PAW工艺及接头性能分析

基金项目: 广东省科学院发展专项(2017GDASCX-0113,2016GDASPT-0205);广东省科技项目(2017A070701026);广州市对外科技合作项目(201807010011,201807010035)

All-position plasma arc welding process for thick TC4 tube and mechanical properties of welded joints

  • 摘要: 介绍了一种适合TC4钛合金厚壁管的等离子弧焊接新工艺,通过对工艺参数分区控制和优化匹配,实现了钛合金管道全位置优质焊接.采用光学显微镜、扫描电镜以及显微维氏硬度仪分别对特征位置焊接接头的显微组织、断口形貌以及显微硬度进行表征.结果表明,特征位置接头焊缝区及热影响区显微组织均主要由网篮状α'相、针状α相以及粗大β相组成;接头拉伸性能良好,拉伸试样均断裂于母材处;冲击试样的断裂形式为韧性断裂;焊缝区及热影响区硬化区的硬度值高于母材.
    Abstract: A new plasma arc welding process for thick-walled TC4 titanium alloy tube was investigated. All-position high-quality welding joints of titanium alloy were achieved through parameters optimization. The microstructure, fracture morphology and microhardness of the welded joints at ordered locations were characterized by optical microscopy, scanning electron microscopy and micro Vickers hardness tester. The results reflected that the microstructure of the weld metal and the heat-affected zone of the characteristic joint were mainly composed of basket-shaped α' phase, needle-like α phase and coarse β phase. The tensile fractures of specimens was occurred at base metal, revealing well tensile properties. The fracture morphology of the impact specimens was ductile fracture. The hardness of weld metal and heat affected zones was higher than that of base metal, respectively.
  • [1] 李殿东,刘锋,王建录.钛材料及钛合金保护焊接特点[J].通用机械, 2003(10):50-53 Li Diandong, Liu Feng, Wang Jianlu. Features of protective welding of titanium material and alloys[J]. General Machinery, 2003(10):50-53
    [2] 赵永庆,魏建峰,高占军,等.钛合金的应用和低成本制造技术[J].材料导报, 2003, 17(4):5-7 Zhao Yongqing, Wei Jianfeng, Gao Zhanjun, et al. Titanium alloys:current status of application and low cost manufacturing technologies[J]. Materials Review, 2003, 17(4):5-7
    [3] 程东海,黄继华,林海凡,等. TC4钛合金激光拼焊接头显微组织及力学性能[J].焊接学报, 2009, 30(2):103-106 Cheng Donghai, Huang Jihua, Lin Haifan, et al. Microstructure and mechanical analysis of Ti-6Al-4V laser butt weld joint[J]. Transactions of the China Welding Institution, 2009, 30(2):103-106
    [4] Lin Y C, Lin Y C. Elucidation of microstructure and wear behaviors of Ti-6Al-4V cladding using tungsten boride powder by the GTAW method[J]. Journal of Coatings Technology&Research, 2011, 8(2):247-253.
    [5] Kumar A, Sapp M, Vincelli J, et al. A study on laser cleaning and pulsed gas tungsten arc welding of Ti-3Al-2. 5V alloy tubes[J]. Journal of Materials Processing Technology, 2010, 210(1):64-71.
    [6] Chen Jianchun, Pan Chunxu. Welding of Ti-6Al-4V alloy using dynamically controlled plasma arc welding process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7):1506-1512.
    [7] 孙伟强,郭春富,刘帛炎,等. TA2管道全位置自动等离子弧焊接头组织性能分析[J].热加工工艺, 2018(3):61-64 Sun Weiqiang, Guo Chunfu, Liu Boyan, et al. Microstructure and properties of all-position automatic plasma arc welding joint of TA2 pipeline[J]. Hot Working Technology, 2018(3):61-64
    [8] Chen J C, Pan C X. Welding of Ti-6A1-4V alloy using dynamically controlled plasma arc welding process[J]. Transaction of Nonferrous Metals Society of China, 2011, 21(7):1506-1512.
    [9] Levine E, Greenhut I, Margolin H. Grain size and grain growth in an equiaxed alpha-beta titanium alloy[J]. Metallurgical Transactions, 1973, 4(11):2519-2525.
    [10] Grewal G, Ikem S. Particle coarsening behavior of α-β titanium alloys[J]. Metallurgical Transactions A, 1990, 21(6):1645-1654.
    [11] 吴巍,程广福,高洪明,等. TC4合金TIG焊接头组织转变与力学性能分析[J].焊接学报, 2009, 30(7):81-84 Wu Wei, Cheng Guangfu, Gao Hongming, et al. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. Transactions of the China Welding Institution, 2009, 30(7):81-84
    [12] Wu K C. Correlation of properties and microstructure in welded Ti-6Al-6V-2Sn[J]. Welding Journal, 1981, 60(11):219s.
    [13] 姚伟,陈俐.钛合金激光焊接接头的组织和力学性能[J].焊接学报, 2006, 27(2):69-72 Yao Wei, Chen Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. Transactions of the China Welding Institution, 2006, 27(2):69-72
    [14] 许鸿吉,尹丽香,李晋炜,等. TC4钛合金电子束焊接接头组织和性能[J].焊接学报, 2005, 26(11):43-46 Xu Hongji, Yin Lixiang, Li Jinwei, et al. Microstructure and properties of TC4 alloy joints welded by the electron beam welding[J]. Transactions of the China Welding Institution, 2005, 26(11):43-46
  • 期刊类型引用(9)

    1. 黄丹,蒋国志,先泽均,陈俊,牟坤. 山地管道全位置自动焊工艺. 焊接技术. 2023(09): 69-72 . 百度学术
    2. 冯靖,吕雪岩,周晓锋,武少杰,程方杰. 热连轧高强钛合金厚壁管道的TIG工艺及组织和性能. 焊接. 2022(01): 8-13 . 百度学术
    3. 冯靖,武少杰,高洪明,程方杰. 基于熔池受力的全位置STT打底焊分段工艺. 焊接. 2022(02): 1-5+17 . 百度学术
    4. 刘万存,袁亮文,肖鹏,赵佳. 全位置镍基内壁与端面一体化增材堆焊技术. 压力容器. 2022(06): 21-27 . 百度学术
    5. 吴桂芬. 316L不锈钢管现场全位置焊接. 机械制造文摘(焊接分册). 2022(05): 35-37 . 百度学术
    6. 樊立民,耿乃涛,杨柳,武少杰,程方杰. 钛合金焊接过程防氧化保护技术进展. 钢铁钒钛. 2021(06): 43-50 . 百度学术
    7. 赵慧慧,尹晨豪,封小松,林志成. 旁路等离子在航天用轴结构增材修复中的应用. 焊接. 2020(01): 47-50+67 . 百度学术
    8. 吴叶军,吕涛,马国新. TC4钛合金等离子弧焊接头组织与性能分析. 兵器材料科学与工程. 2020(06): 60-65 . 百度学术
    9. 赵盛举,祁文军,黄艳华,覃鑫. TC4激光熔覆NiCrCoAlY热循环特性及组织性能. 焊接学报. 2020(09): 89-96+102 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  301
  • HTML全文浏览量:  0
  • PDF下载量:  110
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-10-28

目录

    /

    返回文章
    返回