Ar与H2混合气体保护下GTAW电弧特性数值模拟
Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding
-
摘要: 针对Ar与H2混合气体保护下GTAW焊接电弧的传热与流动特性,建立基于磁流体动力学的二维轴对称数学模型,结合麦克斯韦方程组与流体动力学理论对电弧的温度、电势、电弧压力以及电流密度等进行求解,又分别将传统氩弧与氩氢混合气体保护下电弧的阳极热进行分析与对比.结果表明,加入10%氢气后的电弧轮廓较传统氩弧略微收缩,电磁力增至约传统氩弧的2倍,温度、等离子体流速、电势、电流密度等都明显增大,导致更多热量传递给阳极,在一定程度上提高了焊接热效率.可为高效GTAW焊接工艺的进一步开发提供理论参考.Abstract: An axisymmetric model based on the magnetohydrodynamic (MHD) is established to investigate the effect of hydrogen on heat transfer and fluid flow characteristics of argon plasma in GTAW. The profiles of temperature and voltage drop, distributions of arc pressure and current density are simulated by utilizing the fluid dynamic theory coupled with Maxwell equations. The quantitative analysis and comparison of anodic heat fluxes under pure argon and mixtures of argon and hydrogen are also obtained. The results show that the addition of 10% hydrogen to argon makes the arc slightly constricted and increases electromagnetic forces up to 2 times of the conventional arc. Meanwhile, it also increases the temperature, plasma flow velocity, arc voltage, current density. This leads to more energy transferred to the anode, which can partly improve the thermal efficiency. The present study may provide theoretical reference for the further applications of high efficiency GTAW process.
-
-
[1] 殷树言.气体保护焊工艺基础及应用[M].北京:机械工业出版社, 2012. [2] John N.先进焊接方法与技术[M].北京:机械工业出版社, 2010. [3] Lu Shanping, Dong Wenchao, Li Dianzhong, et al. Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen[J]. Computational Materials Science, 2009, 45(2):327-335. [4] 王新鑫,樊丁,黄健康,等. TIG焊电弧-熔池传热与流动数值模拟[J].机械工程学报, 2015, 51(10):69-78 Wang Xinxin, Fan Ding, Huang Jiankang, et al. Namerecal simulation of heat transfer and fluid flow for arc-weld poolin TIG welding[J]. Journal fo Mechanical Engineering, 2015, 51(10):69-78 [5] Boulos M I, Fauchais P, Pfender E. Thermal plasmas-fundamentals and applications[M]. New York:Springer, 1994. [6] Savas A, Ceyhun V. Finite element analysis of GTAW arc under different shielding gases[J]. Computational Materials Science, 2011, 51(1):53-71. [7] Tanaka M, Terasaki H, Ushio M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical and Materials Transactions A, 2001, 33(7):2043-2052. [8] Dong W, Lu S, Li D, et al. GTAW liquid pool convections and the weld shape variations under helium gas shielding[J]. International Journal of Heat and Mass Transfer, 2011, 54(7-8):1420-1431. [9] Lowke J J, Morrow R, Haidar J, et al. Prediction of gas tungsten arc welding properties in mixtures of argon and hydrogen[J]. Plasma Science IEEE Transactions on, 1997, 25(5):925-930. -
期刊类型引用(4)
1. 孔玲,王玉辉,杨浩坤,彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展. 机械工程学报. 2024(08): 34-47 . 百度学术
2. 万亚雄,唐立志,武学俊,章小峰,张朋彦,黄贞益. Fe-Mn-Al-C低密度高强钢焊接技术的研究与进展. 焊接. 2020(08): 45-51+63-64 . 百度学术
3. 宫唤春. 视觉传感技术在大功率光纤激光焊接焊缝宽度特征提取的应用. 激光杂志. 2019(04): 158-160 . 百度学术
4. 邵天巍,薛俊良,万占东,郭伟. QP980-DP980异种先进高强钢激光焊接头微观组织及力学性能. 焊接. 2019(07): 5-9+65 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 447
- HTML全文浏览量: 2
- PDF下载量: 141
- 被引次数: 6