高级检索

电子束点焊熔池的液态金属冲刷效应作用规律

房玉超, 杨子酉, 何景山

房玉超, 杨子酉, 何景山. 电子束点焊熔池的液态金属冲刷效应作用规律[J]. 焊接学报, 2019, 40(6): 137-142. DOI: 10.12073/j.hjxb.2019400168
引用本文: 房玉超, 杨子酉, 何景山. 电子束点焊熔池的液态金属冲刷效应作用规律[J]. 焊接学报, 2019, 40(6): 137-142. DOI: 10.12073/j.hjxb.2019400168
FANG Yuchao, YANG Ziyou, He Jingshan. Study on liquid metal flushing effect during electron beam spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 137-142. DOI: 10.12073/j.hjxb.2019400168
Citation: FANG Yuchao, YANG Ziyou, He Jingshan. Study on liquid metal flushing effect during electron beam spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 137-142. DOI: 10.12073/j.hjxb.2019400168

电子束点焊熔池的液态金属冲刷效应作用规律

Study on liquid metal flushing effect during electron beam spot welding

  • 摘要: 为了更深入地探究电子束焊接过程中的机理问题,基于对电子束点焊熔池中液态金属冲刷效应的理论分析,利用边界层理论对该效应进行数学建模.使用有限体积法数值软件Fluent,对20 mm厚的2219铝合金电子束点焊熔池的温度场和流场进行三维瞬态数值模拟,研究了液态金属冲刷效应对熔池的作用规律.模拟结果表明,液态金属冲刷效应会对熔池温度场、匙孔稳定性、熔池流场和固液界面形状与位置四个方面产生影响.模拟结果与试验结果吻合良好,验证了数学模型的合理性.
    Abstract: The molten pool behavior of electron beam welding was analysed in order to have a further investigation on the mechanism problems. Based on the theoretical analysis of the the molten pool of electron beam spot welding and boundary layer theory, the flushing effect of liquid metal was mathematically modeled. A three-dimensional transient model was employed to simulate the molten pool in electron beam spot welding based on finite volume method, and the influence of liquid metal flushing effect on temperature field and flow field of molten pool were discussed. The simulation results showed that the liquid metal flushing effect played an important role in temperature field of molten pool, stability of keyhole, flow field of molten pool and position of solid liquid interface. The simulated fusion line of the weld bead follows a good agreement with the experimental result, approving the validation of the mathematical model.
  • [1] 马正斌,刘金合,卢施宇,等.电子束焊接技术研究及进展[J].电焊机, 2012, 42(4):93-96 Ma Zhengbin, Liu Jinhe, Lu Shiyu, et al. Research and development of electron beam welding[J]. Electric Welding Machine, 2012, 42(4):93-96
    [2] 周广德.电子束焊接技术的特点和应用[J].电工电能新技术, 1994, 4(4):25-26 Zhou Guangde. Specialities and applications of electron beam welding[J]. Advanced Technology of Electrical Engineering and Energy, 1994, 4(4):25-26
    [3] Liu Chengcai, He Jingshan, Fan Yongbin. Numerical analysis of thermal fluid transportation during electron beam welding of 2219 aluminum alloy plate and experimental validation[J]. China Welding, 2016, 25(2):21-26.
    [4] 刘成财,刘铖丹,刘巍巍,等. 2219铝合金电子束焊接匙孔演变过程的数值模拟[J].焊接学报, 2016, 37(4):115-118 Liu Chengcai, Liu Chengdan, Liu Weiwei, et al. Numerical simulation of keyhole evolution for 2219 aluminum alloy electron beam spot welding process[J]. Transactions of the China Welding Institution, 2016, 37(4):115-118
    [5] 武传松,王怀刚,张明贤.小孔等离子弧焊接热场瞬时演变过程的数值分析[J].金属学报, 2006(3):311-316 Wu Chuansong, Wang Huaigang, Zhang Mingxian. Numerical analysis of transient development of temperature field in keyhole plasma arc welding[J]. Acta Metallurgica Sinica, 2006(3):311-316
    [6] 罗怡,刘金合,叶宏,等.镁合金真空电子束深熔焊接及焊缝成形数值模拟[J].焊接学报, 2010, 31(6):65-68 Luo Yi, Liu Jinhe, Ye Hong, et al. Numerical simulation on electron beam deep penetration welding and weld appearance of magnesium alloy[J]. Transactions of the China Welding Institution, 2010, 31(6):65-68
    [7] Cho W I, Na S J, Thomy C, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2011, 212(1):262-275.
    [8] 高如超,饶正华,李芸霄,等.脉冲GTAW熔池行为和焊缝成形的三维数值模拟[J].中南大学学报(自然科学版), 2013, 44(11):4712-4719 Gao Ruchao, Rao Zhenghua, Li Yunxiao, et al. Three-dimensional modeling of weld pool dynamics and weld bead formation during pulsed GTAW[J]. Journal of Central South University (Science and Technology), 2013, 44(11):4712-4719
    [9] Wu C S, Zhang T, Feng Y H. Numerical analysis of the heat and fluid flow in a weld pool with a dynamic keyhole[J]. International Journal of Heat and Fluid Flow, 2013, 40:186-197.
    [10] 彭进,王星星,潘庆龙,等.激光自熔焊与激光填丝焊的熔池行为比较[J].稀有金属, 2014, 38(6):283-287 Peng Jin, Wang Xingxing, Pan Qinglong, et al. Comparative study on molten pool behavior in autogenous laser welding and laser welding with filler wire[J]. Chinese Journal of Rare Metals, 2014, 38(6):283-287
    [11] Zhang D B, Li C L, Liu X X, et al. Numerical study of spatter formation during fiber laser welding of aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31:72-79.
    [12] 房玉超,杨子酉,丁睿,等.铝合金薄板电子束穿透焊熔池的数值模拟[J].哈尔滨工业大学学报, 2017, 49(11):30-35 Fang Yuchao, Yang Ziyou, Ding Rui, et al. Molten pool behavior of full penetration EBW on 2219 aluminum alloy[J]. Journal of Harbin Institute of Technology, 2017, 49(11):30-35
    [13] 武少杰,高洪明,张宗郁.基于Fluent的熔融金属填充焊接冲蚀孔形成过程数值模拟[J].焊接学报, 2016, 37(2):119-122 Wu Shaojie, Gao Hongming, Zhang Zongyu. Numerical simulation of formation of hole due to flow of molten metal in welding based on Fluent[J]. Transactions of the China Welding Institution, 2016, 37(2):119-122
    [14] 刘惠枝,舒宏纪.边界层理论[M].北京:人民交通出版社, 1991.
    [15] 李友荣,吴双应,石万元,等.传热分析与计算[M].北京:中国电力出版社, 2013.
    [16] Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D:Applied Physics, 1997, 30:2541-2552.
    [17] Liu C C, He J S. Numerical analysis of fluid transport phenomena and spiking defect formation during vacuum electron beam welding of 2219 aluminum alloy plate[J]. Vacuum, 2016, 132:71-81.
计量
  • 文章访问数:  368
  • HTML全文浏览量:  5
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28

目录

    /

    返回文章
    返回