高级检索

钒对铁基碳化钨耐磨堆焊层组织和性能的影响

魏炜, 黄智泉, 张海燕, 杨威

魏炜, 黄智泉, 张海燕, 杨威. 钒对铁基碳化钨耐磨堆焊层组织和性能的影响[J]. 焊接学报, 2019, 40(6): 131-136. DOI: 10.12073/j.hjxb.2019400167
引用本文: 魏炜, 黄智泉, 张海燕, 杨威. 钒对铁基碳化钨耐磨堆焊层组织和性能的影响[J]. 焊接学报, 2019, 40(6): 131-136. DOI: 10.12073/j.hjxb.2019400167
WEI Wei, HUANG Zhiquan, ZHANG Haiyan, YANG Wei. Effect of vanadium on microstructure and performance of tungsten carbide hardfacing alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 131-136. DOI: 10.12073/j.hjxb.2019400167
Citation: WEI Wei, HUANG Zhiquan, ZHANG Haiyan, YANG Wei. Effect of vanadium on microstructure and performance of tungsten carbide hardfacing alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 131-136. DOI: 10.12073/j.hjxb.2019400167

钒对铁基碳化钨耐磨堆焊层组织和性能的影响

Effect of vanadium on microstructure and performance of tungsten carbide hardfacing alloys

  • 摘要: 在自研制的碳化钨管状药芯焊条中添加不同含量的钒元素(0%~3%)并制备堆焊合金,通过SEM,XRD,EDS等研究分析手段,研究不同钒含量对碳化钨耐磨层组织性能的影响规律.结果表明,钒含量与堆焊层中碳化钨颗粒的溶解程度密切相关,钒优先将碳化钨颗粒分解出的碳原子以碳化钒形式固定,从而抑制了碳化钨颗粒的分解,钒元素含量决定了碳化钨溶解的强弱,含有2%钒元素的堆焊层中生成适量碳化钒有效抑制了碳化钨的溶解.钒元素的加入还能强化碳化钨堆焊层基体金属的硬度,降低堆焊层中碳化钨颗粒剥落的风险,有效提高了堆焊层的耐磨性.
    Abstract: In this study, the vanadium content from 0% to 3% were introduced into the tungsten carbide electrodes to prepare hardfacing layer. The products were analyzed by SEM, XRD and EDS, and the effects of vanadium content on the variation of microstructure, abrasive wear resistance and dissolution of the tungsten carbide hardfacing layer was investigated. Result shows that the tungsten carbide dissolution depends on vanadium concentration, as the primarily formed vanadium carbide particles around tungsten carbide retrain the dissolution of tungsten carbide; the amount of vanadium concentration determines the intensity of the dissolution of tungsten carbide, the alloy with 2% vanadium effectively retains the dissolution of tungsten carbides in the alloy. While the vanadium carbide particles increase the matrix hardness to avoid tungsten carbide peel off, hence to improve the abrasive wear resistance of the hardfacing layer.
  • [1] 曾绍连,李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用[J].特种铸造及有色合金, 2007, 27(6):441-444 Zeng Shaolian, Li Wei. Tungsten carbide enhanced steel-based wear resistant composite[J]. Special-cast and Non-ferrous Alloys, 2007, 27(6):441-444
    [2] Klimpel A, Kik T. Erosion and abrasion wear resistance of GMA wire surfaced nanostructural deposits[J]. Archives of Materials Science and Engineering, 2008, 30(2):121.
    [3] Acker K V, Vanhoyweghen D, Persoons R, et al. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J]. Wear, 2005, 258(1):194-202.
    [4] Chhina H, Campbell S, Kesler O. Thermal and electrochemical stability of tungsten carbide catalyst supports[J]. Journal of Power Sources, 2007, 164(2):431-440.
    [5] 王智慧,刘飞,贺定勇,等.碳化铌对铁基碳化钨耐磨堆焊合金中碳化钨溶解的影响[J].焊接学报, 2016, 37(3):120-124 Wang Zhihui, Liu fei, He Dingyong, et al. Influence of niobium content on WC dissolution in ironbased hardfacing alloy[J]. Transactions of the China Welding Institution, 2016, 37(3):120-124
    [6] 尤显卿,宋雪峰,马建国,等.电冶熔铸WCp/钢基复合材料的组织及断口研究[J].材料热处理学报, 2005, 26(6):96-100 You Xianqing, Song Xuefeng, Ma Jianguo, et al. Study on microstructure and fracture of electro-cast WCp/steel matrix material[J]. Transactions of Materials and Heat Treatment, 2005, 26(6):96-100
    [7] Arnoldo B J. Microstructure of vanadium, niobium and titanium alloyed high chromium white cast irons[J]. International Journal of Cast Metals Research, 2001, 13(6):343-361.
    [8] 陈厚生.碳化钒与氮化钒[J].钢铁钒钛, 2000(1):72-73 Chen Housheng. VC and NC[J]. Iron Steel Vanadium Titanium, 2000(1):72-73
    [9] 徐流杰,魏世忠,龙锐,等.高钒高速钢中碳化钒的形态分布研究[J].铸造, 2003, 52(11):1069-1073 Xu Liujie, Wei Shizhong, Long Rui, et al. Research on morphology and distribution of vanadium carbide in high vanadium high speed steel[J]. Foundry, 2003, 52(11):1069-1073
    [10] 程凤军,王一三,丁义超,等.原位内生碳化钒颗粒增强铁基表面复合材料的研究[J].铸造技术, 2005, 26(5):377-380 Cheng Fengjun, Wang Yisan, Ding Yichao, et al. Study on in situ V8C7 partical reinforced iron matrix surface composite[J]. Foundry Technology, 2005, 26(5):377-380
    [11] 李祖来,蒋业华,叶小梅,等. WC在WC/灰铸铁复合材料基体中的溶解[J].复合材料学报, 2007, 24(2):13-17 Li Zulai, Jiang Yehua, Ye Xiaomei, et al. Dissolution of tungsten carbide particulates (WC) in the matrix of WC reinforced gray cast ion matrix composite[J]. Acta Materiae Compositae Sinica, 2007, 24(2):13-17
  • 期刊类型引用(13)

    1. 王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 . 百度学术
    2. 周志杰,池元清,蔡舒鹏,张琪,唐雪松,张永康. 应力迭代法重构电弧增材AA7075铝合金薄壁件残余应力场研究. 计算机集成制造系统. 2024(03): 1127-1137 . 百度学术
    3. 李坤,左春林,廖若冰,吉辰,蒋斌,潘复生. 增材制造铝合金残余应力研究现状及展望. 航空学报. 2024(12): 6-30 . 百度学术
    4. 曹流,朱民富,李峻荣,张沁丹. 基于连续逐层添加的金属增材制造热-力耦合行为数值模拟研究. 铸造. 2024(08): 1065-1072 . 百度学术
    5. 肖罡,张喜龙,项菲菲,郭鹏程,项忠珂,杨钦文. 选区激光熔化Al-Mg-Sc-Zr铝合金成形过程数值模拟. 塑性工程学报. 2024(11): 112-122 . 百度学术
    6. 夏玉峰,滕海灏,张雪,郑德宇,权国政. Ti-6Al-4V合金电弧熔丝增材的组织性能研究进展. 重庆大学学报. 2022(04): 87-99 . 百度学术
    7. 李岩,苏辰,张冀翔. 电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势. 机械制造文摘(焊接分册). 2022(01): 14-20 . 百度学术
    8. 王强,贾金龙,苏振,康举,赵玥,吴爱萍. 铝合金WAAM筒形构件变形演变的有限元计算. 焊接技术. 2022(04): 1-6+113 . 百度学术
    9. 权国政,杨焜,盛雪,余炎泽. 电弧熔丝增材制造残余应力控制方法综述. 塑性工程学报. 2021(11): 1-10 . 百度学术
    10. 李春凤,肖笑,尹玉祥,李晨,张柯柯. TIG电弧增材熔池行为的数值模拟研究现状. 材料热处理学报. 2020(07): 25-32 . 百度学术
    11. 赵鹏康,唐成,蒲尊严,李言,李淑娟. TIG电弧增材制造5356铝合金微观组织与拉伸性能. 焊接学报. 2020(05): 65-70+77+101 . 本站查看
    12. 王浩宇,荣鹏,徐伟伟,高川云,虞文军,庞盛永. 飞机栅格零件SLM成形过程的变形演化仿真研究. 航空制造技术. 2020(22): 70-75 . 百度学术
    13. 李岩,苏辰,张冀翔. 电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势. 焊接. 2020(09): 31-37+63 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  324
  • HTML全文浏览量:  0
  • PDF下载量:  48
  • 被引次数: 27
出版历程
  • 收稿日期:  2019-04-11

目录

    /

    返回文章
    返回