高级检索

激光选区熔化组织分析及人工神经网络力学性能预测

杨天雨, 张鹏林, 尹燕, 刘文朝, 张瑞华

杨天雨, 张鹏林, 尹燕, 刘文朝, 张瑞华. 激光选区熔化组织分析及人工神经网络力学性能预测[J]. 焊接学报, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
引用本文: 杨天雨, 张鹏林, 尹燕, 刘文朝, 张瑞华. 激光选区熔化组织分析及人工神经网络力学性能预测[J]. 焊接学报, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
Citation: YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162

激光选区熔化组织分析及人工神经网络力学性能预测

基金项目: 广东省‘扬帆计划’引进创新创业团队专项资助(2015YT02G090);阳江市五金刀剪与镍合金产业增材制造技术创新平台建设(2015B020221002);高端刀具激光增材制造技术及产业化(2015B010123002)

Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net

  • 摘要: 采用激光选区熔化技术(selective laser melting,SLM)制备18Ni300时效模具钢.通过扫描电子显微镜(scanning electron microscope,SEM),研究试样的枝晶生长取向和凝固组织状态.利用人工神经网络对激光功率、扫描速度和扫描间距进行重要性分析,同时采用BP (back propagation,BP)神经网络以工艺参数为特征对材料的抗拉强度进行预测,应用遗传算法(genetic algorithm,GA)对神经网络权值和阈值进行寻优.结果表明,试样组织主要呈树枝柱状生长,外延生长明显,组织取向主要取决于熔池底部的凝固条件;熔池顶部易发生柱状晶向等轴晶转变(columnar to equiaxed transition,CET),可以通过调节工艺参数来控制转变区的大小;热毛细对流导致熔池其它区域也出现枝向转变区.人工神经网络重要性预测结果由大到小的顺序是激光功率、扫描速度、扫描间距,BP拟合结果与实际结果较为接近,决定系数R2=0.73.
    Abstract: Selective laser melting has been applied to fabricate 18Ni300. SEM is used to observe dendritic growth orientation and solidification structure. Artificial neural network is applied to rank the respective importance of laser power, scanning speed and scanning space for mechanical properties, while BP neural net with improved weight by genetic algorithm is applied to the prediction of tensile property. Results show that the main structure of the specimen is columnar dendritic crystals with significant epitaxial growth. The orientation of the growth is determined by the solidification condition at the bottom of the molten pool. CET can easily take place on the top of the melting pool. Meanwhile, there is transition zone in other places contributed by the thermo capillary convection. The result of the importance prediction by artificial neural network shows:They order from high to low is laser power, scanning speed and scanning space.Since the prediction results agree with the actual ones, BP neural net can effectively predict actual results. The determination coefficient R2=0.73.
  • [1] 尹华,白培康,刘斌,等.金属粉末选区激光熔化技术的研究现状及其发展趋势[J].热加工工艺, 2010, 39(1):140-144 Yin Hua, Bai Peikang, Liu Bin, et al. The research status and development trend of selective laser melting[J]. Hot Working Technology, 2010, 39(1):140-144
    [2] 沈以赴,吴鹏,顾冬冬,等. Ni-CuSn混合粉末选区激光烧结试验[J].焊接学报, 2005, 26(2):73-76 Shen Yifu, Wu Peng, Gu Dongdong, et al. Laser sinter experiment using Ni-CuSn mixed powder[J]. Transactions of the China Welding Institution, 2005, 26(2):73-76
    [3] 付立定.不锈钢粉末选择性激光熔化直接制造金属零件研究[D].武汉:华中科技大学, 2008.
    [4] Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115:285-294.
    [5] Sander J, Hufenbach J, Giebeler L, et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting[J]. Materials&Design, 2016, 89:335-341.
    [6] 周鑫.激光选区熔化微尺度熔池特性与凝固微观组织[D].北京:清华大学, 2016.
    [7] Raghavan N, Dehoff R, Pannala S, et al. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing[J]. Acta Materialia, 2016, 112:303-314.
    [8] 王迪,杨永强,吴伟辉.光纤激光选区熔化316L不锈钢工艺优化[J].中国激光, 2009, 36(12):3233-3239 Wang Di, Yang Yongqiang, Wu Weihui. Selective fiber laser melting parameter optimization using 316L powder[J]. Chinese Journal of Lasers, 2009, 36(12):3233-3239
    [9] 闫程程,杨立军,代文豪,等.工艺参数对激光选区熔化316L不锈钢表面质量的影响[J].热加工工艺, 2017(20):170-174 Yan Chengcheng, Yang Lijun, Dai Wenhao, et al. The parameter influence on surface quality of selective laser melting using 316L powder[J]. Hot Working Technology, 2017(20):170-174
    [10] 张爱华,高佛来,牛小革,等.基于BP神经网络的钢轨闪光对焊接头灰斑面积预测[J].焊接学报, 2016, 37(11):11-14 Zhang Aihua, Gao Fulai, Niu Xiaoge, et al. Rail way flash welding joint grey spot area prediction using BP neural network[J]. Transactions of the China Welding Institution, 2016, 37(11):11-14
    [11] 周建平,许燕,操窘,等.基于BP神经网络和遗传算法的大功率脉冲电源优化设计[J].焊接学报, 2016, 37(4):9-13 Zhou Jianping, Xu Yan, Cao Jiong, et al. Optimization design of high pulse power supply using BP neural network and genetic algorithm[J]. Transactions of the China Welding Institution, 2016, 37(4):9-13
    [12] 王超,胡彬.基于遗传算法的18Ni300钢持久性能的神经网络预测[J].工具技术, 2016, 50(4):61-64 Wang Chao, Hu Bin. 18Ni300 endurance property prediction using genetic algorithm[J]. Tool Technology, 2016, 50(4):61-64
    [13] Rehme O, Emmelmann C. Reproducibility for properties of selective laser melting products[C]//Proceedings of the 3nd International WLT-Conference on Lasers in Manufacturing, Munich:2005:1-6.
    [14] Fang Jinxiang, Dong Shiyun, Wang Yujiang, et al. Residual stress modeling of thin wall by laser cladding forming[J]. China Welding, 2017, 26(3):34-38.
    [15] Zhang Ke, Zhang Zhixi, Jiang Yongfeng, et al. Microstructure and corrosion resistance of 304 stainless steel electroslag strip cladding[J]. China Welding, 2016, 25(1):15-20.
    [16] 黄卫东.激光立体成形[M].西安:西北工业大学出版社, 2007.
    [17] 杨森,黄卫东,苏云鹏,等. DD2单晶合金激光表面熔凝处理的组织[J].中国激光, 2001, 28(2):186-188 Yang Sen, Huang Weidong, Su Yunpeng, et al. DD2 monocrystal structure after laser process[J]. Chinese Journal of Lasers, 2001, 28(2):186-188
    [18] Kurz W, Fisher D J. Fundamentals of Solidification[M]. Switzerland, Laubisrutistr:Trans Tech Publications Ltd., 1989.
    [19] 苏彦庆,郭景哲,刘畅,等.定向凝固技术与理论研究的进展[J].特种铸造及有色合金, 2006, 26(1):25-30 Su Yanqing, Guo Jingzhe, Liu Chang, et al. The development of solidification technology[J]. Special Casting Nonferrous Alloy, 2006, 26(1):25-30
  • 期刊类型引用(6)

    1. 苏才津,秦南南,冯哲,张丽. 激光熔覆铁基合金涂层熔覆质量形貌预测. 四川冶金. 2025(01): 16-21 . 百度学术
    2. 胡雅楠,余欢,吴圣川,奥妮,阚前华,吴正凯,康国政. 基于机器学习的增材制造合金材料力学性能预测研究进展与挑战. 力学学报. 2024(07): 1892-1915 . 百度学术
    3. 惠记庄,骆伟,阎志强,王俊杰,吕景祥,郭许,张浩. AlSi10Mg选区激光熔化表面粗糙度预测、优化及表面形貌分析. 表面技术. 2024(15): 129-140+151 . 百度学术
    4. 鲁芬,郁伯铭. 人工神经网络的激光熔覆层特征分析. 激光杂志. 2023(04): 254-258 . 百度学术
    5. 穆伟豪,陈雪辉,张雨,黄磊,朱达荣,董必春. 316L不锈钢选区激光熔化表面的形貌分析与粗糙度预测. 激光与光电子学进展. 2022(07): 255-262 . 百度学术
    6. 丁宏德,朱春明,唐斌,顾小燕. 316L不锈钢SLM件与锻件的激光焊接头微观组织与性能. 焊接. 2021(05): 9-14+63 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  435
  • HTML全文浏览量:  9
  • PDF下载量:  85
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-03-16

目录

    /

    返回文章
    返回