铁素体不锈钢搅拌摩擦焊工艺及缺陷形成机理
Investigation on friction stir welding process of ferritic stainless steel and mechanism of defect formation
-
摘要: 采用钨铼合金搅拌工具对T4003铁素体不锈钢进行搅拌摩擦焊接工艺试验,研究搅拌摩擦焊缝成形、接头组织特征及缺陷形成机理.结果表明,不同旋转速度下随焊接速度增加,轴向压力呈单调增加趋势;当转速为150,250 r/min时,可获得无缺陷致密焊缝;当转速为350 r/min时,靠近前进侧的焊缝区出现孔洞缺陷,随着焊接速度和轴向压力不断增加,焊接缺陷有减少趋势.焊接接头焊核区发生了相变和明显淬硬现象,组织为细小等轴铁素体和低碳马氏体,焊缝具有明显不均匀硬度分布.提出了一种焊缝热塑性金属平衡流动模型分析其缺陷形成机理.Abstract: Friction stir welding was performed on joining T4003 ferritic stainless steel by using a tungsten rhenium (W-Re) alloy tool. The weld formation, microstructural characteristics, and mechanism of defect formation in the weld were examined. It was showed that the axial pressure of tool monotonously increased with the increasing of welding speed under different rotational speeds. Defect-free welds were successfully produced at rotational speeds of 150 and 250 r/min. However, wormhole defects were produced near the advancing side of the stir zone in the welded joints at the rotational speed of 350 r/min. This phenomenon tended to decrease with the increasing of the tool axial pressure and welding speed. A phase transformation and significantly harden occurred in the stir zone of the welded joint, and the microstructure in this region changed to very fine grains consisting of duplex structure of equiaxed ferrite and low carbon martensite. An uneven hardness distribution in the weld was observed. Moreover, a balanced-flow model of weld metal was proposed, and employed to analyze the mechanism of defect formation in the weld.
-
-
[1] 王旭友,雷振,毛辉,等.铁素体不锈钢激光-MAG复合热源焊缝成形及接头冲击韧性分析[J].焊接学报, 2009, 30(12):21-25 Wang Xuyou, Lei Zhen, Mao Hui, et al. Appearance of weld and impact toughness for the joints of ferrite stainless steel by laser-MAG hybrid welding[J]. Transactions of the China Welding Institution, 2009, 30(12):21-25 [2] 张红霞,裴飞飞,王志斌,等.热输入对超薄443铁素体不锈钢组织性能的影响[J].焊接学报, 2013, 34(4):15-18 Zhang Hongxia, Pei Feifei, Wang Zhibin, et al. Effect of heat input on microstructure and mechanical properties of ultra-thin 443 ferritic stainless steel[J]. Transactions of the China Welding Institution, 2013, 34(4):15-18 [3] Ahn B W, Choi D H, Kim D J, et al. Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool[J]. Materials Science and Engineering:A, 2012, 532:476-479. [4] 杨新岐,秦红珊.铝合金搅拌摩擦焊技术研究存在的问题及趋势[J].焊接, 2009(7):24-33 Yang Xinqi, Qin Hongshan. Trends and problems for current study of aluminum alloy FSW technology[J]. Welding&Joining, 2009(7):24-33 [5] Thomas W M, Woolin P, Johnson K I. Friction stir welding of a ferritic stainless steel-A feasibility study[J]. TWI Members Report, 1998, 664:1-17. [6] Lakshminarayanan A K, Balasubramanian V. An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless-steel joints[J]. Materials&Design, 2010, 31(10):4592-4600. [7] Bilgin M B, Meran C. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels[J]. Materials&Design, 2012, 33:376-383. [8] Kumar N, Mishra R S, Yuan W. Friction stir welding of dissimilar alloys and materials[M]. Oxford:Butterworth-Heinemann Elsevier Ltd, 2015. [9] Husain M M, Sarkar R, Pal T K, et al. Friction stir welding of steel:heat input, microstructure, and mechanical property co-relation[J]. Journal of Materials Engineering and Performance, 2015, 24(9):3673-3683. [10] Zhang Z H, Wang Z B, Wang W X, et al. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel[J]. Materials&Design, 2015, 68:114-120. [11] Cho H H, Han H N, Hong S T, et al. Microstructural analysis of friction stir welded ferritic stainless steel[J]. Materials Science and Engineering:A, 2011, 528(6):2889-2894. [12] Morisada Y, Imaizumi T, Fujii H, et al. Three-dimensional visualization of material flow during friction stir welding of steel and aluminum[J]. Journal of Materials Engineering and Performance, 2014, 23(11):4143-4147. [13] Hua P, Moronov S, Nie C Z, et al. Microstructure and properties in friction stir weld of 12Cr steel[J]. Science and Technology of Welding and Joining, 2014, 19(1):76-81. [14] Liu F C, Nelson T W. In-situ material flow pattern around probe during friction stir welding of austenitic stainless steel[J]. Materials&Design, 2016, 110:354-364. [15] Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5):372-376. [16] Huang Y X, Wang Y B, Wan L, et al. Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):1115-1123. [17] Zhang Z, Xiao B L, Wang D, et al. Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2011, 42(6):1717-1726. -
期刊类型引用(27)
1. 尹东坤,徐锴,滕彬,武鹏博,黄瑞生,温子缘. 万瓦级激光高效焊接研究现状. 电焊机. 2024(05): 1-16 . 百度学术
2. 郭雪洋,董彬,秦国梁,郭怀力. 窄间隙激光焊接研究现状与存在的问题. 电焊机. 2024(07): 1-11 . 百度学术
3. 李艳,耿韶宁,蒋平,李元泰,顾思远,王建庄. 超高功率激光-电弧复合焊接飞溅演化行为及抑制方法. 机械工程学报. 2024(16): 98-107 . 百度学术
4. 牟梓豪,滕彬,徐锴. Q1400超高强钢激光-MAG复合焊与MAG组织及性能对比. 机械制造文摘(焊接分册). 2023(03): 25-30 . 百度学术
5. 杨环宇,徐信坤,巴现礼,陶星空,刘黎明. 低功率激光-双电弧焊接钛合金中厚板工艺及机理. 机械制造文摘(焊接分册). 2023(03): 1-8 . 百度学术
6. 刘俊,贾玉发,万华,魏康明. 中厚板T形接头激光-MAG复合焊接工艺研究. 金属加工(热加工). 2023(12): 47-49+54 . 百度学术
7. 严春妍,朱子江,张浩,张可召,顾正家,包晔峰. 能量配比对激光-MIG复合焊接头残余应力的影响. 电焊机. 2022(02): 1-7 . 百度学术
8. 蒋宝,黄瑞生,雷振,曹浩,孙谦. 中厚钢板万瓦级光纤激光焊接技术研究现状. 机械制造文摘(焊接分册). 2022(02): 11-18 . 百度学术
9. 聂鑫,李小宇,黄瑞生,周军,梁晓梅. 铝合金万瓦级激光-MIG电弧复合焊缝成形. 机械制造文摘(焊接分册). 2022(02): 36-40 . 百度学术
10. 张书生,钟立明. 10 mm厚Q355B激光-电弧复合焊接接头组织及性能. 机械制造文摘(焊接分册). 2022(02): 7-10 . 百度学术
11. 曹瑜琦,倪川皓,易伟,李建宇. Q890D钢激光-电弧复合焊冷裂纹敏感性. 机械制造文摘(焊接分册). 2022(02): 1-6 . 百度学术
12. 李泽宇,徐连勇,郝康达,赵雷,荆洪阳. MAG和激光扫描-电弧复合焊X80钢接头组织和性能. 焊接学报. 2022(05): 36-42+115-116 . 本站查看
13. 时尚,刘丰刚,黄春平,舒宗富. 激光复合热源焊接技术的研究进展. 材料导报. 2022(11): 170-177 . 百度学术
14. 王耀,张洁琦,顾小燕. 基于LLE激光双电弧复合焊接过程稳定性研究. 激光技术. 2022(04): 538-544 . 百度学术
15. 蒋宝,徐富家,杨义成,聂鑫,宋扬,刘孔丰. 万瓦级激光-电弧复合穿透焊接成形缺陷研究. 电焊机. 2022(10): 15-22 . 百度学术
16. 赵俊鹏,刘长军,刘子奇,李昊依. 激光-CMT复合焊接内涵、研究现状与展望. 应用激光. 2022(09): 1-11 . 百度学术
17. 杨环宇,徐信坤,巴现礼,陶星空,刘黎明. 低功率激光-双电弧焊接钛合金中厚板工艺及机理. 焊接学报. 2022(12): 12-19+113-114 . 本站查看
18. 徐锴,武鹏博,梁晓梅,陈健,黄瑞生. 铝合金激光-多股绞合焊丝MIG复合焊特性分析. 焊接学报. 2021(01): 16-23+98 . 本站查看
19. 相茜,敖三三,罗震,刘云鸾. 焊接与智能制造(上)——第25届北京·埃森焊接与切割展览会焊接国际论坛综述. 焊接技术. 2021(07): 1-6 . 百度学术
20. 蒋宝,黄瑞生,李琳琳,滕彬,邹吉鹏,李振华,武鹏博. 万瓦级光纤激光焊接工艺研究. 电焊机. 2021(10): 8-14+151 . 百度学术
21. 杨义成,冷冰,黄瑞生,聂鑫,马一鸣,武鹏博. 基于高通量测试方法的高功率激光焊接工艺特性分析. 焊接学报. 2021(11): 77-82+101-102 . 本站查看
22. 李宪政,毕学松,李宝良,李志波,李京洋. 起重机吊臂高效激光-MAG复合横焊技术. 焊接. 2020(02): 56-60+68 . 百度学术
23. 蒋宝,黄瑞生,雷振,曹浩,孙谦. 中厚钢板万瓦级光纤激光焊接技术研究现状. 焊接. 2020(02): 42-48+67-68 . 百度学术
24. 聂鑫,李小宇,黄瑞生,周军,梁晓梅. 铝合金万瓦级激光-MIG电弧复合焊缝成形. 焊接. 2020(02): 24-27+37+66 . 百度学术
25. 周洋,孔谅,王敏,李芳,华学明. 纯钛TA2薄板电弧辅助激光焊高速焊接过程的电弧和熔池特征行为研究. 电焊机. 2020(07): 24-29+58+148 . 百度学术
26. 蒋宝,雷振,黄瑞生,杨义成,梁晓梅. 万瓦级光纤激光-MAG复合焊接焊缝成形. 焊接. 2020(06): 5-11+32+61 . 百度学术
27. 徐锴,武鹏博,黄瑞生,梁晓梅,梁裕. 多股绞合焊丝研究与应用进展. 焊接. 2020(07): 6-18+61 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 335
- HTML全文浏览量: 3
- PDF下载量: 65
- 被引次数: 34