[1] |
王旭友,雷振,毛辉,等.铁素体不锈钢激光-MAG复合热源焊缝成形及接头冲击韧性分析[J].焊接学报, 2009, 30(12):21-25 Wang Xuyou, Lei Zhen, Mao Hui, et al. Appearance of weld and impact toughness for the joints of ferrite stainless steel by laser-MAG hybrid welding[J]. Transactions of the China Welding Institution, 2009, 30(12):21-25
|
[2] |
张红霞,裴飞飞,王志斌,等.热输入对超薄443铁素体不锈钢组织性能的影响[J].焊接学报, 2013, 34(4):15-18 Zhang Hongxia, Pei Feifei, Wang Zhibin, et al. Effect of heat input on microstructure and mechanical properties of ultra-thin 443 ferritic stainless steel[J]. Transactions of the China Welding Institution, 2013, 34(4):15-18
|
[3] |
Ahn B W, Choi D H, Kim D J, et al. Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool[J]. Materials Science and Engineering:A, 2012, 532:476-479.
|
[4] |
杨新岐,秦红珊.铝合金搅拌摩擦焊技术研究存在的问题及趋势[J].焊接, 2009(7):24-33 Yang Xinqi, Qin Hongshan. Trends and problems for current study of aluminum alloy FSW technology[J]. Welding&Joining, 2009(7):24-33
|
[5] |
Thomas W M, Woolin P, Johnson K I. Friction stir welding of a ferritic stainless steel-A feasibility study[J]. TWI Members Report, 1998, 664:1-17.
|
[6] |
Lakshminarayanan A K, Balasubramanian V. An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless-steel joints[J]. Materials&Design, 2010, 31(10):4592-4600.
|
[7] |
Bilgin M B, Meran C. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels[J]. Materials&Design, 2012, 33:376-383.
|
[8] |
Kumar N, Mishra R S, Yuan W. Friction stir welding of dissimilar alloys and materials[M]. Oxford:Butterworth-Heinemann Elsevier Ltd, 2015.
|
[9] |
Husain M M, Sarkar R, Pal T K, et al. Friction stir welding of steel:heat input, microstructure, and mechanical property co-relation[J]. Journal of Materials Engineering and Performance, 2015, 24(9):3673-3683.
|
[10] |
Zhang Z H, Wang Z B, Wang W X, et al. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel[J]. Materials&Design, 2015, 68:114-120.
|
[11] |
Cho H H, Han H N, Hong S T, et al. Microstructural analysis of friction stir welded ferritic stainless steel[J]. Materials Science and Engineering:A, 2011, 528(6):2889-2894.
|
[12] |
Morisada Y, Imaizumi T, Fujii H, et al. Three-dimensional visualization of material flow during friction stir welding of steel and aluminum[J]. Journal of Materials Engineering and Performance, 2014, 23(11):4143-4147.
|
[13] |
Hua P, Moronov S, Nie C Z, et al. Microstructure and properties in friction stir weld of 12Cr steel[J]. Science and Technology of Welding and Joining, 2014, 19(1):76-81.
|
[14] |
Liu F C, Nelson T W. In-situ material flow pattern around probe during friction stir welding of austenitic stainless steel[J]. Materials&Design, 2016, 110:354-364.
|
[15] |
Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5):372-376.
|
[16] |
Huang Y X, Wang Y B, Wan L, et al. Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):1115-1123.
|
[17] |
Zhang Z, Xiao B L, Wang D, et al. Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2011, 42(6):1717-1726.
|