高级检索

铁素体不锈钢搅拌摩擦焊工艺及缺陷形成机理

唐文珅, 杨新岐, 李胜利, 李会军

唐文珅, 杨新岐, 李胜利, 李会军. 铁素体不锈钢搅拌摩擦焊工艺及缺陷形成机理[J]. 焊接学报, 2019, 40(6): 87-93,111. DOI: 10.12073/j.hjxb.2019400160
引用本文: 唐文珅, 杨新岐, 李胜利, 李会军. 铁素体不锈钢搅拌摩擦焊工艺及缺陷形成机理[J]. 焊接学报, 2019, 40(6): 87-93,111. DOI: 10.12073/j.hjxb.2019400160
TANG Wenshen, YANG Xinqi, LI Shengli, LI Huijun. Investigation on friction stir welding process of ferritic stainless steel and mechanism of defect formation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 87-93,111. DOI: 10.12073/j.hjxb.2019400160
Citation: TANG Wenshen, YANG Xinqi, LI Shengli, LI Huijun. Investigation on friction stir welding process of ferritic stainless steel and mechanism of defect formation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 87-93,111. DOI: 10.12073/j.hjxb.2019400160

铁素体不锈钢搅拌摩擦焊工艺及缺陷形成机理

基金项目: 国际热核聚变实验堆(ITER)计划专项(2015GB119001)

Investigation on friction stir welding process of ferritic stainless steel and mechanism of defect formation

  • 摘要: 采用钨铼合金搅拌工具对T4003铁素体不锈钢进行搅拌摩擦焊接工艺试验,研究搅拌摩擦焊缝成形、接头组织特征及缺陷形成机理.结果表明,不同旋转速度下随焊接速度增加,轴向压力呈单调增加趋势;当转速为150,250 r/min时,可获得无缺陷致密焊缝;当转速为350 r/min时,靠近前进侧的焊缝区出现孔洞缺陷,随着焊接速度和轴向压力不断增加,焊接缺陷有减少趋势.焊接接头焊核区发生了相变和明显淬硬现象,组织为细小等轴铁素体和低碳马氏体,焊缝具有明显不均匀硬度分布.提出了一种焊缝热塑性金属平衡流动模型分析其缺陷形成机理.
    Abstract: Friction stir welding was performed on joining T4003 ferritic stainless steel by using a tungsten rhenium (W-Re) alloy tool. The weld formation, microstructural characteristics, and mechanism of defect formation in the weld were examined. It was showed that the axial pressure of tool monotonously increased with the increasing of welding speed under different rotational speeds. Defect-free welds were successfully produced at rotational speeds of 150 and 250 r/min. However, wormhole defects were produced near the advancing side of the stir zone in the welded joints at the rotational speed of 350 r/min. This phenomenon tended to decrease with the increasing of the tool axial pressure and welding speed. A phase transformation and significantly harden occurred in the stir zone of the welded joint, and the microstructure in this region changed to very fine grains consisting of duplex structure of equiaxed ferrite and low carbon martensite. An uneven hardness distribution in the weld was observed. Moreover, a balanced-flow model of weld metal was proposed, and employed to analyze the mechanism of defect formation in the weld.
  • [1] 王旭友,雷振,毛辉,等.铁素体不锈钢激光-MAG复合热源焊缝成形及接头冲击韧性分析[J].焊接学报, 2009, 30(12):21-25 Wang Xuyou, Lei Zhen, Mao Hui, et al. Appearance of weld and impact toughness for the joints of ferrite stainless steel by laser-MAG hybrid welding[J]. Transactions of the China Welding Institution, 2009, 30(12):21-25
    [2] 张红霞,裴飞飞,王志斌,等.热输入对超薄443铁素体不锈钢组织性能的影响[J].焊接学报, 2013, 34(4):15-18 Zhang Hongxia, Pei Feifei, Wang Zhibin, et al. Effect of heat input on microstructure and mechanical properties of ultra-thin 443 ferritic stainless steel[J]. Transactions of the China Welding Institution, 2013, 34(4):15-18
    [3] Ahn B W, Choi D H, Kim D J, et al. Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool[J]. Materials Science and Engineering:A, 2012, 532:476-479.
    [4] 杨新岐,秦红珊.铝合金搅拌摩擦焊技术研究存在的问题及趋势[J].焊接, 2009(7):24-33 Yang Xinqi, Qin Hongshan. Trends and problems for current study of aluminum alloy FSW technology[J]. Welding&Joining, 2009(7):24-33
    [5] Thomas W M, Woolin P, Johnson K I. Friction stir welding of a ferritic stainless steel-A feasibility study[J]. TWI Members Report, 1998, 664:1-17.
    [6] Lakshminarayanan A K, Balasubramanian V. An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless-steel joints[J]. Materials&Design, 2010, 31(10):4592-4600.
    [7] Bilgin M B, Meran C. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels[J]. Materials&Design, 2012, 33:376-383.
    [8] Kumar N, Mishra R S, Yuan W. Friction stir welding of dissimilar alloys and materials[M]. Oxford:Butterworth-Heinemann Elsevier Ltd, 2015.
    [9] Husain M M, Sarkar R, Pal T K, et al. Friction stir welding of steel:heat input, microstructure, and mechanical property co-relation[J]. Journal of Materials Engineering and Performance, 2015, 24(9):3673-3683.
    [10] Zhang Z H, Wang Z B, Wang W X, et al. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel[J]. Materials&Design, 2015, 68:114-120.
    [11] Cho H H, Han H N, Hong S T, et al. Microstructural analysis of friction stir welded ferritic stainless steel[J]. Materials Science and Engineering:A, 2011, 528(6):2889-2894.
    [12] Morisada Y, Imaizumi T, Fujii H, et al. Three-dimensional visualization of material flow during friction stir welding of steel and aluminum[J]. Journal of Materials Engineering and Performance, 2014, 23(11):4143-4147.
    [13] Hua P, Moronov S, Nie C Z, et al. Microstructure and properties in friction stir weld of 12Cr steel[J]. Science and Technology of Welding and Joining, 2014, 19(1):76-81.
    [14] Liu F C, Nelson T W. In-situ material flow pattern around probe during friction stir welding of austenitic stainless steel[J]. Materials&Design, 2016, 110:354-364.
    [15] Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5):372-376.
    [16] Huang Y X, Wang Y B, Wan L, et al. Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):1115-1123.
    [17] Zhang Z, Xiao B L, Wang D, et al. Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2011, 42(6):1717-1726.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  335
  • HTML全文浏览量:  3
  • PDF下载量:  65
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-01-11

目录

    /

    返回文章
    返回