Si-glass-Al阳极键合电流特性及其力学性能
Electric current characteristic and mechanical properties of Si-glass-Al anodic bonding process
-
摘要: 采用两步法实现了Si-glass-Al的可靠连接,提出了键合三层晶片的电流-时间模型.键合电流结果表明,两次阳极键合的电流变化规律一致,即先迅速增加至最大值,然后呈指数式下降;发现第二次键合的电流峰值总是大于第一次,结合提出的电流-时间模型,表明键合材料之间因不完全接触而产生的电阻会对电流峰值产生显著影响.利用扫描电镜(SEM)观察Si-glass-Al界面形貌,界面结合良好,在450℃/800 V的条件下,glass-Al及glass-Si界面处Na+耗尽层厚度分别达到了546,820 nm.试样的拉伸强度随着电压的增大而升高,无论是先键合Si还是先键合Al箔,断裂总是发生在第二次键合界面附近或玻璃基体上.
-
关键词:
- 电子封装 /
- 阳极键合 /
- Si-glass-Al /
- 电流-时间模型
Abstract: In this paper, a novel current-time model of two-step triple-stack anodic bonding was proposed, and Si-glass-Al was successfully bonded together. The results indicate that the current variation of two bonding process is similar, the currents increase rapidly to the maximum value and then decreases exponentially. The peak current of the second step bonding is always larger than the first step, which indicates resistance produced by incomplete contact between bonding materials has a significant effect on peak current. SEM was conducted to investigate the interfacial structure of the Si-glass-Al samples. At 450℃/800 V, the thickness of Na+ depletion layer at the glass-Al and glass-Si interfaces is 546 and 820 nm, respectively. The tensile strength of the sample increases with the increase of voltage. Whether Si or Al was bonded first, fracture always occurs near the second step bonding interface or the glass substrate.-
Keywords:
- package /
- anodic bonding /
- Si-glass-Al /
- current-time model
-
-
[1] Feynman R P. There's plenty of room at the bottom[J]. Journal of Microelectromechanical Systems, 1992, 1(1):60-66. [2] Liu X, Huang X M, Ma H B, et al. Microstructure and properties of the joints of ZrO2 ceramic/stainless steel brazed in vacuum with AgCuTi active filler metal[J]. China Welding, 2018, 27(2):52-56. [3] 阴旭,刘翠荣,杜超,等.无机填料对高分子固体电解质与金属铝键合性能的影响[J].焊接学报, 2015, 36(11):37-40 Yin Xu, Liu Cuirong, Du Chao, et al. Effect of inorganic fillers on bonding properties of polymer solid electrolyte to metal aluminum[J]. Transactions of the China Welding Institution, 2015, 36(11):37-40 [4] Liu C, Li J, Chen H, et al. Experiment and simulation analysis of multi-layer glass/aluminum anodic bonding[J]. International Journal of Nonlinear Sciences&Numerical Simulation, 2014, 15(1):69-75. [5] Hu L, Xue Y, Shi F. Interfacial investigation and mechanical properties of glass-Al-glass anodic bonding process[J]. Journal of Micromechanics&Microengineering, 2017, 27(10):10.1088/1361-6439/aa83c7. [6] Chu H M, Vu H N, Hane K. Electric feed-through for vacuum package using double-side anodic bonding of silicon-on-insulator wafer[J]. Journal of Electrostatics, 2013, 71(2):130-133. [7] Despont M, Gross H, Arrouy F, et al. Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding[J]. Sensors&Actuators A Physical, 1996, 55(2-3):219-224. [8] Zhang T, Zhang H, Xu J, et al. Study on triple-stack anodic bonding using two electrodes[J]. Sensors&Actuators A Physical, 2010, 157(1):168-172. [9] Wallis G. Direct-current polarization during field-assisted glass-metal sealing[J]. Journal of the American Ceramic Society, 1970, 53(10):563-567. [10] He J, Yang F, Wang W, et al. Electric current characteristic of anodic bonding[J]. Journal of Micromechanics&Microengineering, 2015, 25(6):65002-65011. [11] Knowles K M, Helvoort A T J V. Anodic bonding[J]. Metallurgical Reviews, 2006, 51(5):273-311. [12] Xing Q, Sasaki G. Nanostructured gamma-alumina formed during anodic bonding of Al/Glass[J]. Solid State Ionics, 2007, 178(3-4):179-185. [13] Howlader M M, Kibria M G, Zhang F, et al. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 degrees[J]. Talanta, 2010, 82(2):508-515. -
期刊类型引用(11)
1. 王彦龙,曹旭武,丁正祥,闫德俊,彭卫华. 船用新型TA3钛合金深熔TIG焊接头组织与力学性能研究. 电焊机. 2024(12): 56-61 . 百度学术
2. 刘赛智,刘禹尧,强斌,姚昌荣,李亚东. 钢箱形杆件焊接制造变形模拟研究. 四川建筑. 2023(01): 196-200+203 . 百度学术
3. 马志文,梁慧丽. 极端动力荷载下的风力发电塔筒生产法兰内倾度控制技术. 机械设计与制造工程. 2023(05): 117-121 . 百度学术
4. 殷亚运,徐希军,雷小伟,崔永杰,张浩. 小孔TIG焊技术在中大厚度TC4板上的应用研究. 热加工工艺. 2023(11): 10-14 . 百度学术
5. 徐良,谷世伟,杨海锋,宋坤林,李康宁,韩来慧. 碳纤维增强复合材料与6061铝合金激光连接仿真. 焊接学报. 2023(11): 42-51+131 . 本站查看
6. 汪家政,刘在良,李川江. HTIG焊接技术在造船工程中的应用试验. 机械研究与应用. 2022(02): 202-205 . 百度学术
7. 唐君才,陈和,魏占静. 304不锈钢K-TIG焊接工艺. 机械制造文摘(焊接分册). 2022(03): 37-40 . 百度学术
8. 杨义成,陈健,黄瑞生,徐锴,孙谦,杜兵. 空心钨极焊接关键技术问题及发展现状. 焊接. 2021(05): 1-8+63 . 百度学术
9. 甘国梁. 加油站双层储油罐底板施工变形控制方法研究. 粘接. 2021(11): 82-87 . 百度学术
10. 吴健文,陈浩宇,高阳,范文艳,闫德俊,饶宇中,王振民. 锁孔TIG焊接技术的研究进展. 精密成形工程. 2020(04): 1-9+193 . 百度学术
11. 徐良,欧阳凯,杨海锋. K-TIG焊接动态过程及组织和性能分析. 焊接学报. 2020(08): 68-72+101 . 本站查看
其他类型引用(8)
计量
- 文章访问数: 347
- HTML全文浏览量: 5
- PDF下载量: 66
- 被引次数: 19