高级检索

铝/钢固态焊接合界面金属间化合物生长机制

申中宝, 邱然锋, 石红信, 马恒波

申中宝, 邱然锋, 石红信, 马恒波. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155
引用本文: 申中宝, 邱然锋, 石红信, 马恒波. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155
SHEN Zhongbao, QIU Ranfeng, SHI Hongxin, MA Hengbo. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155
Citation: SHEN Zhongbao, QIU Ranfeng, SHI Hongxin, MA Hengbo. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155

铝/钢固态焊接合界面金属间化合物生长机制

基金项目: 国家自然科学基金资助项目(51875177)

Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel

  • 摘要: 在保持固态条件下,分别变化加热温度、时间对铝/Q235钢爆炸焊接头进行加热处理.分析了接合界面区反应层形貌等微观特征,探讨了加热温度、加热时间对反应层厚度的影响,研究了接合界面金属间化合物的生长行为.界面反应物是由靠近铝合金侧的反应物为Fe4Al13和靠近钢侧反应物为Fe2Al5构成.金属间化合物层随着加热时间的延长而变厚.结果表明,金属间化合物的生长满足抛物线法则,其生长激活能为33.26 kJ/mol.
    Abstract: The explosive welded Al/Q235 joint was annealed under various heating time and temperature keeping the joint stay at solid state condition. The interfacial reaction layer feature was analyzed and the effects of heating temperature and time on the thickness of reaction layer were investigated, the growth of intermetallic compound at the joining interface was studied. The interfacial reaction layer consisting of Fe2Al5 adjacent to steel and Fe4Al13 adjacent to aluminum formed in the joining interface. The thickness of intermetallic compound increased with the longer of heating time. The results show that the growth of intermetallic compound satisfies the parabolic rule and that the growth active energy is 33.26 kJ/mol.
  • [1] Qiu R, Satonaka S, Iwamoto C. Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels[J]. Materials&Design, 2009, 30(9):3686-3689.
    [2] Ge Jiaqi, Wang Kehong, Zhang Deku, et al. Microstructure characteristics and mechanical properties of steel stud to Al alloy by CMT welding-brazing process[J]. China Welding, 2016, 25(1):49-56.
    [3] Springer H, Koskta A, Payton E J, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys[J]. Acta Materialia, 2011, 59(4):1586-1600.
    [4] Springer H, Szczepaniak A, Raabe D. On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminum alloys[J]. Acta Materialia, 2015, 96:203-211.
    [5] Cheng W J, Wang C J. Growth of intermetallic layer in the aluminide mild steel during hot-dipping[J]. Surface&Coatings Technology, 2009, 204(6-7):824-828.
    [6] Yin Fucheng, Zhao Manxiu, Liu Yongxiong. Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum[J]. Transaction of Nonferrous Metals Society of China, 2013, 23(2):556-561.
    [7] 吴铭方,司乃潮,王敬,等.铁/铝扩散偶界面反应层生长机理分析[J].焊接学报, 2011, 32(5):29-32 Wu Mingfang, Si Naichao, Wang Jing, et al. Analysis on growth mechanism on interfacial interlayer on Fe/Al couple[J]. Transactions of the China Welding Institution, 2011, 32(5):29-32
    [8] Jindal Vikas, Srivastava V C. Growth of intermetallic layer at roll bonded IF-steel/aluminum interface[J]. Journal of Materials processing Technology, 2008, 195(1-3):88-93.
    [9] 王楠楠,邱然锋,石红信,等.铝合金与低碳钢的夹层电阻点焊接头特性[J].材料热处理学报, 2015, 36(1):70-74 Wang Nannan, Qiu Ranfeng, Shi Hongxin, et al. Characterization of resistance spot welded joint between aluminum alloy and mild steel with an interlayer[J]. Transactions of Materials and Heat Treatment, 2015, 36(1):70-74
    [10] 王楠楠,邱然锋,石红信.基于中间层的铝合金/钢电阻点焊[J].材料热处理学报, 2019, 40(1):155-160 Wang Nannan, Qiu Ranfeng, Shi Hongxin. Resistance spot welding of aluminum alloy/steel via an insert[J]. Transactions of Materials and Heat Treatment, 2019, 40(1):155-160
    [11] Shahverdi H R, Ghomanshchi M R, Shabestari S, et al. Microstructure analysis of interfacial reaction between molten aluminium and solid iron[J]. Journal of Materials Processing Technology, 2002, 124(6):345-352.
  • 期刊类型引用(6)

    1. 周传昆,王伟,娄双涛,陆凯雷. 不锈钢薄板高频冷焊与TIG焊接头的性能对比. 热加工工艺. 2023(07): 122-124+129 . 百度学术
    2. 唐君才,陈和,魏占静. 304不锈钢K-TIG焊接工艺. 机械制造文摘(焊接分册). 2022(03): 37-40 . 百度学术
    3. 何建萍,吴鑫,吉永丰,卢飞. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理. 焊接学报. 2021(06): 77-84+101-102 . 本站查看
    4. 高永. 海洋石油平台挡风墙不锈钢薄板焊接专用夹具. 石油工程建设. 2020(01): 75-77 . 百度学术
    5. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
    6. 林晓辉,冷冰,方乃文,徐亦楠,马一鸣. 焊接热输入对节镍不锈钢MAG接头组织性能影响. 金属加工(热加工). 2020(10): 48-52 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  448
  • HTML全文浏览量:  7
  • PDF下载量:  83
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-01-29

目录

    /

    返回文章
    返回