高级检索

铝/钢固态焊接合界面金属间化合物生长机制

申中宝, 邱然锋, 石红信, 马恒波

申中宝, 邱然锋, 石红信, 马恒波. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155
引用本文: 申中宝, 邱然锋, 石红信, 马恒波. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155
SHEN Zhongbao, QIU Ranfeng, SHI Hongxin, MA Hengbo. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155
Citation: SHEN Zhongbao, QIU Ranfeng, SHI Hongxin, MA Hengbo. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 58-63. DOI: 10.12073/j.hjxb.2019400155

铝/钢固态焊接合界面金属间化合物生长机制

基金项目: 国家自然科学基金资助项目(51875177)

Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel

  • 摘要: 在保持固态条件下,分别变化加热温度、时间对铝/Q235钢爆炸焊接头进行加热处理.分析了接合界面区反应层形貌等微观特征,探讨了加热温度、加热时间对反应层厚度的影响,研究了接合界面金属间化合物的生长行为.界面反应物是由靠近铝合金侧的反应物为Fe4Al13和靠近钢侧反应物为Fe2Al5构成.金属间化合物层随着加热时间的延长而变厚.结果表明,金属间化合物的生长满足抛物线法则,其生长激活能为33.26 kJ/mol.
    Abstract: The explosive welded Al/Q235 joint was annealed under various heating time and temperature keeping the joint stay at solid state condition. The interfacial reaction layer feature was analyzed and the effects of heating temperature and time on the thickness of reaction layer were investigated, the growth of intermetallic compound at the joining interface was studied. The interfacial reaction layer consisting of Fe2Al5 adjacent to steel and Fe4Al13 adjacent to aluminum formed in the joining interface. The thickness of intermetallic compound increased with the longer of heating time. The results show that the growth of intermetallic compound satisfies the parabolic rule and that the growth active energy is 33.26 kJ/mol.
  • [1] Qiu R, Satonaka S, Iwamoto C. Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels[J]. Materials&Design, 2009, 30(9):3686-3689.
    [2] Ge Jiaqi, Wang Kehong, Zhang Deku, et al. Microstructure characteristics and mechanical properties of steel stud to Al alloy by CMT welding-brazing process[J]. China Welding, 2016, 25(1):49-56.
    [3] Springer H, Koskta A, Payton E J, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys[J]. Acta Materialia, 2011, 59(4):1586-1600.
    [4] Springer H, Szczepaniak A, Raabe D. On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminum alloys[J]. Acta Materialia, 2015, 96:203-211.
    [5] Cheng W J, Wang C J. Growth of intermetallic layer in the aluminide mild steel during hot-dipping[J]. Surface&Coatings Technology, 2009, 204(6-7):824-828.
    [6] Yin Fucheng, Zhao Manxiu, Liu Yongxiong. Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum[J]. Transaction of Nonferrous Metals Society of China, 2013, 23(2):556-561.
    [7] 吴铭方,司乃潮,王敬,等.铁/铝扩散偶界面反应层生长机理分析[J].焊接学报, 2011, 32(5):29-32 Wu Mingfang, Si Naichao, Wang Jing, et al. Analysis on growth mechanism on interfacial interlayer on Fe/Al couple[J]. Transactions of the China Welding Institution, 2011, 32(5):29-32
    [8] Jindal Vikas, Srivastava V C. Growth of intermetallic layer at roll bonded IF-steel/aluminum interface[J]. Journal of Materials processing Technology, 2008, 195(1-3):88-93.
    [9] 王楠楠,邱然锋,石红信,等.铝合金与低碳钢的夹层电阻点焊接头特性[J].材料热处理学报, 2015, 36(1):70-74 Wang Nannan, Qiu Ranfeng, Shi Hongxin, et al. Characterization of resistance spot welded joint between aluminum alloy and mild steel with an interlayer[J]. Transactions of Materials and Heat Treatment, 2015, 36(1):70-74
    [10] 王楠楠,邱然锋,石红信.基于中间层的铝合金/钢电阻点焊[J].材料热处理学报, 2019, 40(1):155-160 Wang Nannan, Qiu Ranfeng, Shi Hongxin. Resistance spot welding of aluminum alloy/steel via an insert[J]. Transactions of Materials and Heat Treatment, 2019, 40(1):155-160
    [11] Shahverdi H R, Ghomanshchi M R, Shabestari S, et al. Microstructure analysis of interfacial reaction between molten aluminium and solid iron[J]. Journal of Materials Processing Technology, 2002, 124(6):345-352.
  • 期刊类型引用(6)

    1. 武靖伟,王有银,厚喜荣,王志刚,车文斌,张建晓,朵元才. N06200镍基合金与S32168不锈钢界面金属间化合物的生长行为. 焊接学报. 2024(02): 121-128+136 . 本站查看
    2. 方正帅,刘佳明,黄根哲,张宏,刘凤德. 不等厚铝/钢激光焊接接头组织与性能研究. 激光技术. 2023(02): 147-153 . 百度学术
    3. 迟露鑫,黄岩,许惠斌,顾凌翔,张玉虎,冉洋,吴江川. 铝钢电磁脉冲焊接界面特性及金属粒子分布分析. 焊接学报. 2023(05): 36-43+131 . 本站查看
    4. 胡天寒,吴天海,潘华,丁凯,高玉来. 钢/铝异种材料接头焊接技术研究进展. 钢铁研究学报. 2023(08): 928-949 . 百度学术
    5. 李鹏,邹存柱,董红刚,吴宝生,李超,杨跃森,闫德俊. Fe/Al异质金属接头界面组织演变、生长动力学及力学性能. 材料工程. 2022(05): 43-51 . 百度学术
    6. 曹雪龙,王刚,邢昌,檀财旺,蒋俊俊. 工艺参数对Ni/Cu复合中间层下的铝/钢激光焊接接头显微组织与性能的影响(英文). Transactions of Nonferrous Metals Society of China. 2021(08): 2277-2286 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  453
  • HTML全文浏览量:  7
  • PDF下载量:  85
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-01-29

目录

    /

    返回文章
    返回