[1] |
Murugan R, Venugobal P R, Thyla P R, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1):53-59.
|
[2] |
Mu W, Gao J, Jiang H, et al. Automatic classification approach to weld defects based on PCA and SVM[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(10):535-539.
|
[3] |
胡文刚,刚铁.基于多探头源数据融合的焊缝缺陷识别[J].焊接学报, 2013, 34(3):45-48 Hu Wengang, Gang Tie. Recognition of weld defects based on multi-probe source data fusion[J]. Transactions of the China welding Institution, 2013, 34(3):45-48
|
[4] |
Chen Y, Ma H W, Zhang G M. A support vector machine approach for classification of welding defects from ultrasonic signals[J]. Nondestructive Testing and Evaluation, 2014, 29(3):243-254.
|
[5] |
Gang T, Takahashi Y, Wu L. Intelligent pattern recognition and diagnosis of ultrasonic inspection of welding defects based on neural network and information fusion[J]. Science and Technology of Welding and Joining, 2002, 7(5):314-320.
|
[6] |
Drai R, Khelil M, Benchaala A. Time frequency and wavelet transform applied to selected problems in ultrasonics NDE[J]. NDT&E International, 2002, 35(8):567-572.
|
[7] |
Qu Z, Chong A Y B, Chacon J L F, et al. Study on the laser-based weld surface flaw identification system employing wavelet analysis methodology[J]. Research in Nondestructive Evaluation, 2016, 27(3):137-154.
|
[8] |
Movafeghi A. Using empirical mode decomposition and a fuzzy algorithm for the analysis of weld defect images[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2015, 57(1):35-39.
|
[9] |
Cruz F C, Simas Filho E F, Albuquerque M C S, et al. Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing[J]. Ultrasonics, 2017, 73:1-8.
|
[10] |
Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2002(7):971-987.
|
[11] |
Shahriar M R, Ahsan T, Chong U P. Fault diagnosis of induction motors utilizing local binary pattern-based texture analysis[J]. Eurasip Journal on Image and Video Processing, 2013(1):29-39.
|
[12] |
Chatlani N, Soraghan J J. Local binary patterns for 1-D signal processing[C]//201018th European Signal Processing Conference. IEEE, 2010:95-99.
|
[13] |
Huang Y C, Lin C K. Method for displaying words and processing device and computer program product thereof:US 8935165B2[P]. 2015-01-13.
|
[14] |
Kaya Y, Uyar M, Tekin R, et al. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals[J]. Applied Mathematics and Computation, 2014, 243:209-219.
|
[15] |
Hoshyar O, Monhammad S, Habibollah D, et al. A novel method for classification of power quality disturbances based on a new one dimensional local binary pattern approach[C]//2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Malaysia:IEEE, 2017:225-229.
|
[16] |
McCool P, Chatlani N, Petropoulakis L, et al. 1-D local binary patterns for onset detection of myoelectric signals[C]//2012 IEEE European Signal Processing Conference. Strathclyde, UK:IEEE, 2012:499-503.
|
[17] |
马再超,赵荣珍,杨文瑛.转子故障特征数据分类的KPCA-BFDA方法[J].振动.测试与诊断, 2013, 33(2):192-198 Ma Zaichao, Zhao Rongzhen, Yang Wenying. KPCA-BFDA for the classification of rotor fault feature data[J]. Journal of Vibration, Measurement&Diagnosis, 2013, 33(2):192-198
|
[18] |
Vapnik V. The nature of statistical learning theory[M]. New York:Springer, 2013.
|
[19] |
Phienthrakul T, Kijsirikul B. Evolutionary strategies for hyperparameters of support vector machines based on multi-scale radial basis function kernels[J]. Soft Computing, 2010, 14(7):681-699.
|
[20] |
Abe S. Support vector machines for pattern classification[M]. London:Springer, 2010.
|
[21] |
Masnata A, Sunseri M. Neural network classification of flaws detected by ultrasonic means[J]. NDT&E International, 1996, 29(2):87-93.
|
[22] |
Tsui P P C, Basir O A. Wavelet basis selection and feature extraction for shift invariant ultrasound foreign body classification[J]. Ultrasonics, 2006, 45(1-4):1-14.
|
[23] |
Liu Z, Xu H. Kernel parameter selection for support vector machine classification[J]. Journal of Algorithms&Computational Technology, 2014, 8(2):163-177.
|