高级检索

Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学

黄惠珍, 赵亚楠, 彭如意, 段远德

黄惠珍, 赵亚楠, 彭如意, 段远德. Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学[J]. 焊接学报, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
引用本文: 黄惠珍, 赵亚楠, 彭如意, 段远德. Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学[J]. 焊接学报, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
Citation: HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149

Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学

基金项目: 国家自然科学基金资助项目(51304121);江西省教育厅科技资助项目(GJJ14111)

Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface

  • 摘要: 采用扫描电镜和光学显微镜观察研究了230~260℃焊接温度范围内Sn-9Zn-0.1S/Cu焊点界面金属间化合物的结构及生长动力学.结果表明,在该焊点界面形成的化合物可分为两层:靠铜侧的是厚且平直的γ-Cu5Zn8化合物层;靠焊料侧的则为另一薄且呈扇贝、粒状的CuZn化合物层.提高钎焊温度及延长反应时间基本不改变Sn-9Zn-0.1S/Cu焊点界面金属间化合物的结构和成分,但会使形成的界面金属间化合物层厚度增加.γ-Cu5Zn8金属间化合物层的厚度与反应时间的平方根呈线性关系,表明其生长由扩散机制控制.根据阿伦尼乌斯公式,Sn-9Zn-0.1S/Cu焊点界面γ-Cu5Zn8金属间化合物层反应活化能为22.09 kJ/mol.
    Abstract: The microstructure and growth kinetics of intermetallic compounds formed during the soldering reactions between Sn-9Zn-0.1S solders and Cu substrates at various temperatures ranging from 230 to 260℃ were investigated using scanning electron microscope and optical microscope. The results indicate that a thick planar layer of γ-Cu5Zn8 next to Cu substrate and a thin particulate layer of CuZn adjacent to solder can be formed at the Sn-9Zn-0.1S/Cu interface, and the constituent of the interfacial intermetallics do not change with the increase of soldering temperature and the prolonged reaction time, while the thickness of γ-Cu5Zn8 layer increases with the soldering temperature and reaction time. The relationship between the thickness of γ-Cu5Zn8 layer and the square root of reaction time fits linear, which shows that the growth of the intermetallic layer is diffusion-controlled. Kinetics analysis indicated that the activation energy of the intermetallic growth was 22.09 kJ/mol.
  • [1] Mayappan R, Ahmad Z A. Effect of Bi addition on the activation energy for the growth of Cu5Zn8 intermetallic in the Sn-Zn lead-free solder[J]. Intermetallics, 2010, 18:730-735.
    [2] Lee Y G, Duh J G. Interfacial morphology and concentration profile in the unleaded solder/Cu assembly[J]. Journal of Materials Science:Materials in Electronics, 1999, 10(1):33-43.
    [3] Wang M C, Yu S P, Chang T C, et al. Kinetics of intermetallic compound formation at 91Sn-8.55Zn-0.45Al lead-free solder alloy/Cu interface[J]. Journal of Alloys and Compounds, 2004, 381:162-167.
    [4] Huang H Z, Wei X Q, Zhou L. Growth kinetics of intermetallic compounds at the interface of liquid Sn-9Zn/Cu[J]. Advanced Materials Research, 2011, 233− 235:2323− 2327.
    [5] 薛鹏,王克鸿,周琦,等. Sn-Zn-Nd钎料焊点高温时效界面组织演变[J].焊接学报, 2016, 37(1):33-36 Xue Peng, Wang Kehong, Zhou Qi, et al. Transformation of interfacial microstructure in aged Sn-Zn-Nd solder joint[J]. Transactions of the China Welding Institution, 2016, 37(1):33-36
    [6] Wang F J, Huang Y, Tian S, et al. Effect of cooling and aging on microstructure and mechanical properties of Sn-9Zn solder[J]. China Welding, 2017, 26(1):37-43.
    [7] 帅歌旺,周清泉,黄惠珍. Sn-9Zn/Cu焊点界面金属间化合物层结构研究[J].特种铸造及有色合金, 2016, 36(5):548-551 Shuai Gewang, Zhou Qingquan, Huang Huizhen. Interface structure of Sn-9Zn/Cu lead-free solder joints[J]. Special Casting and Non-ferrous Alloys, 2016, 36(5):548-551
    [8] Wei X Q, Li Y H, Huang H Z. Effects of sulfur on the properties of Sn-9Zn as lead-free solder[J]. Journal of Electronic Materials, 2017, 46(2):1067-1071.
    [9] Sharma R C, Chang Y A. Bulletin of alloy phase diagrams[M]. ASM:Ohio, 1986.
    [10] Suganuma K, Niihara K, Shoutoku T, et al. Wetting and interface microstructure between Sn-Zn binary alloys and Cu[J]. Journal of Materials Research, 1998, 13(10):2859-2865.
    [11] Lee C S, Shieu F S. Growth of intermetallic compounds in the Sn-9Zn/Cu joint[J]. Journal of Electronic Materials, 2006, 35(8):1660-1664.
    [12] Chen W X, Xue S B, Wang H, et al. Reliability studies of Sn-9Zn/Cu and Sn-9Zn-0.3Ag/Cu soldered joints with aging treatment[J]. Journal of Materials Science:Materials in Electronics, 2010, 21:779-786.
    [13] Suganuma K. Advances in lead-free electronics soldering[J]. Current Opinion in Solid State Materials Science, 2001, 5:55-64.
    [14] Yu S P, Hon M H, Wang M C. The adhesion strength of a lead-free solder hot-dipped on copper substrate[J]. Journal of Electronic Materials, 2000, 29(2):237-243.
    [15] Kim D G, Jang H S, Jung S B. Kinetics of intermetallic layer growth and interfacial reactions between Sn-8Zn-5In solder and bare copper substrate[J]. Materials Science&Technology, 2013, 21(3):381-386.
    [16] Lin W H, Chuang T H. Interfacial reactions between liquid Sn-8Zn-3Bi solders and Cu substrates[J]. Journal of Materials Engineering and Performance, 2003, 12(4):452-455.
  • 期刊类型引用(8)

    1. 任泽良,项肇,余细平,肖中,孙俊峰. 6061铝合金MIG焊接头的组织和力学性能研究. 热加工工艺. 2023(03): 139-141+148 . 百度学术
    2. 张子傲,张知航,黄继华,陈树海,叶政,杨健. 高速列车铝合金车体焊接工艺研究进展. 轨道交通材料. 2023(01): 1-7 . 百度学术
    3. 田洪雷,吴广宇,王天,王富杰,郄默繁,何长树. 微观组织特征对服役6N01-T6铝合金材料力学性能的影响. 轻金属. 2022(04): 49-54 . 百度学术
    4. 辛雅轩,孙卓彬,王贯盈,梁永梅,彭珍珍,刘豫,韩帅琦. 高密度电脉冲处理时间对6N01铝合金微观组织和力学性能的影响. 金属加工(热加工). 2022(07): 51-53 . 百度学术
    5. 王晓军,杨健,路彦龙,安兵. 6N01铝合金K-TIG焊接头的组织及性能. 焊接技术. 2021(08): 19-23+105-106 . 百度学术
    6. 韩成才,曹嘉晨,郭龙龙. 背面冷却对316L对接接头焊接残余应力和变形的影响. 西安石油大学学报(自然科学版). 2021(05): 99-107 . 百度学术
    7. 王建军,张豪,田妮,何长树,赵刚. 6N01铝合金挤压材显微组织及其力学性能的相关性. 轻合金加工技术. 2020(02): 25-32 . 百度学术
    8. 王立伟,索英超,吴朝峰,汪殿龙,梁志敏,董思齐. 高频脉冲复合直流TIG对6N01铝合金焊接接头组织和硬度的影响. 沈阳大学学报(自然科学版). 2019(03): 173-177 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  394
  • HTML全文浏览量:  1
  • PDF下载量:  52
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-09-02

目录

    /

    返回文章
    返回