高级检索

CoCrAlY表面改性后热障涂层高温氧化及热震性能

韩志勇, 丘珍珍, 史文新, 丁坤英

韩志勇, 丘珍珍, 史文新, 丁坤英. CoCrAlY表面改性后热障涂层高温氧化及热震性能[J]. 焊接学报, 2019, 40(6): 19-22,28. DOI: 10.12073/j.hjxb.2019400148
引用本文: 韩志勇, 丘珍珍, 史文新, 丁坤英. CoCrAlY表面改性后热障涂层高温氧化及热震性能[J]. 焊接学报, 2019, 40(6): 19-22,28. DOI: 10.12073/j.hjxb.2019400148
HAN Zhiyong, QIU Zhenzhen, SHI Wenxin, DING Kunying. High temperature oxidation and thermal shock properties of thermal barrier coating by CoCrAlY surface modification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 19-22,28. DOI: 10.12073/j.hjxb.2019400148
Citation: HAN Zhiyong, QIU Zhenzhen, SHI Wenxin, DING Kunying. High temperature oxidation and thermal shock properties of thermal barrier coating by CoCrAlY surface modification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 19-22,28. DOI: 10.12073/j.hjxb.2019400148

CoCrAlY表面改性后热障涂层高温氧化及热震性能

基金项目: 国家自然科学青年科学基金资助项目(51501222)

High temperature oxidation and thermal shock properties of thermal barrier coating by CoCrAlY surface modification

  • 摘要: 采用大气等离子喷涂技术(APS)在镍基高温合金表面制备了CoCrAlY粘结层,利用电子束蒸发镀膜在CoCrAlY表面蒸镀纳米铝膜,并使用强流脉冲电子束熔敷纳米铝膜进行表面改性,最后使用APS在表面改性后的CoCrAlY表面沉积陶瓷层制备了热障涂层.在空气环境中对热障涂层进行高温氧化试验和热震试验.结果表明,CoCrAlY表面改性后热障涂层经1 050℃静态空气氧化后,界面处生成的热生长氧化物(TGO)具有较高的连续性和致密性,有效阻碍了氧化的进一步发展且避免尖角型氧化物的形成,提高了热障涂层的抗氧化能力;在1 050℃高温加热后10℃水淬热震条件下,脱落率仅为2%左右.
    Abstract: CoCrAlY coating was prepared by air plasma spray (APS) on Ni-based superalloy surface, nano-scale Al film was deposited on CoCrAlY surface by electron beam evaporation and then modified by high current pulsed electron beam, finally the ceramic coating was deposited on CoCrAlY surface by APS. The high temperature oxidation test and thermal shock test of the thermal barrier coating in air atmosphere were carried out. The results show that the thermally grown oxide (TGO) formed at the interface of modified CoCrAlY coating and top coating had high continuity and compactness after high temperature oxidation at 1 050℃, effectively hinder the further development of oxidation and avoid the formation of corner oxide, and then, the high temperature resistance properties of the thermal barrier coating were improved. The thermal shock test under 1 050℃ high temperature holding and water quenching at 10℃ were conducted, the rate of abscission of thermal barrier coating is only about 2%.
  • [1] Han J C, Guo P, Luo J X, et al. Interface fracture toughness and fracture mechanisms of thermal barrier coatings investigated by indentation test and acoustic emission technique[J]. China Welding, 2016, 25(3):63-70.
    [2] 朱晨,于建海,郭亚飞,等.航空发动机热障涂层存在的问题及其发展方向[J].表面技术, 2016, 45(1):13-19 Zhu Chen, Yu Jianhai, Guo Yafei, et al. Problems of aircraft engine thermal barrier coating and its developing direction[J]. Surface Technology, 2016, 45(1):13-19
    [3] 周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报, 2010, 31(5):504-531 Zhou Yichun, Liu Qixing, Yang Li, et al. Failure mechanism and life prediction of thermal barrier coatings[J]. Journal of Solid Mechanics, 2010, 31(5):504-531
    [4] Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1):73-80.
    [5] Beck T, Trunova O, Herzog R, et al. TBCs for gas turbines under thermomechanical loadings:failure behaviour and life prediction[J]. Energy and Power Engineering, 2013, 33(4):647-653.
    [6] 周宏明,易丹青,余志明,等.热障涂层的研究现状与发展方向[J].材料导报, 2006, 20(3):4-8 Zhou Hongming, Yi Danqing, Yu Zhiming, et al. Research status and development tendency of thermal barrier coatings[J]. Materials Review, 2006, 20(3):4-8
    [7] Lima R S, Marple B R. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects[J]. Materials Science and Engineering, 2008, 485(1):182-193.
    [8] Jamali H, Mozafarinia R, Razavi R S, et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J]. Ceramics International, 2012, 38(8):6705-6712.
    [9] Daroonparvar M, Yajid M A M, Yusof N M, et al. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones[J]. Journal of Rare Earths, 2014, 32(10):989-1002.
    [10] 王红英,李志军,汤伟杰,等.等离子喷涂氧化锆涂层及激光重熔涂层的摩擦磨损性能[J].焊接学报, 2014, 35(4):41-44 Wang Hongying, Li Zhijun, Tang Weijie, et al. Friction and wear properties of the zirconia coatings prepared by plasma spraying and laser remelting[J]. Transactions of the China Welding Institution, 2014, 35(4):41-44
    [11] Trunova O, Beck T, Herzog R, et al. Damage mechanisms and life-time behavior of plasma sprayed thermal barrier coating systems for gas turbines-Part I:experiments[J]. Surface and Coatings Technology, 2008, 202(20):5027-5032.
    [12] Jin Y, Yu H, Yang D, et al. Effects of complexing agents on acidic electroless nickel deposition[J]. Rare Metals, 2010, 29(4):401-406.
    [13] 蔡杰.强流脉冲电子束作用下热障涂层热生长氧化物生长行为与应力状态[D].江苏:江苏大学, 2015.
    [14] 纪朝辉,王敏转,冯日宝,等.超音速颗粒轰击处理对MCrAlY涂层氧化行为的影响[J].焊接学报, 2008, 29(11):29-32 Ji Zhaohui, Wang Minzhuan, Feng Ribao, et al. Effect of supersonic fine particles bombarding on oxidation behavior of MCrAlY coating[J]. Transactions of the China Welding Institution, 2008, 29(11):29-32
    [15] 韩志勇,韩剑,靖珍珠. HCPEB作用下镀铝CoCrAlY涂层的表面微观结构状态[J].焊接学报, 2016, 37(11):31-34 Han Zhiyong, Han Jian, Jing Zhenzhu. Surface microstructure of aluminized CoCrAlY coating irradiated by high current pulsed electron beam[J]. Transactions of the China Welding Institution, 2016, 37(11):31-34
    [16] 靖珍珠.表面铝分布对MCrAlY粘结层高温氧化行为的影响[D].天津:中国民航大学, 2016.
  • 期刊类型引用(5)

    1. 陈健,刘海浪,卢儒学,张倩,曾壮基. 电子束熔覆工艺对合金表面改性的研究现状. 热加工工艺. 2021(12): 30-33+38 . 百度学术
    2. 王枚,冯彦铭,陈依. 热障涂层材料研究进展. 机电工程技术. 2021(12): 333-336 . 百度学术
    3. 陈军,李伟,贺冬云,郝胜智. 强流脉冲电子束表面改性FeCrAl涂层的显微组织及耐高温腐蚀性能研究. 表面技术. 2020(05): 200-206 . 百度学术
    4. 党丽. 水溶性金属热处理保护涂层耐腐蚀性能研究. 合成材料老化与应用. 2020(06): 117-120 . 百度学术
    5. 韩志勇,卢博文,王仕成. Pt改性对NiAl涂层氧化性能及显微组织的影响. 焊接学报. 2020(09): 44-48+99 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  291
  • HTML全文浏览量:  11
  • PDF下载量:  78
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-01-09

目录

    /

    返回文章
    返回