高级检索

基于示踪粒子的摆动TIG填丝焊熔池行为数值分析

黄健康, 陈会子, 杨茂鸿, 张裕明, 杨福前

黄健康, 陈会子, 杨茂鸿, 张裕明, 杨福前. 基于示踪粒子的摆动TIG填丝焊熔池行为数值分析[J]. 焊接学报, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146
引用本文: 黄健康, 陈会子, 杨茂鸿, 张裕明, 杨福前. 基于示踪粒子的摆动TIG填丝焊熔池行为数值分析[J]. 焊接学报, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146
HUANG Jiankang, CHEN Huizi, YANG Maohong, ZHANG Yuming, YANG Fuqian. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146
Citation: HUANG Jiankang, CHEN Huizi, YANG Maohong, ZHANG Yuming, YANG Fuqian. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146

基于示踪粒子的摆动TIG填丝焊熔池行为数值分析

基金项目: 国家自然科学基金资助项目(51665034)

Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles

  • 摘要: 为了使TIG焊熔池液态金属分布更加均匀,在普通TIG填丝焊的基础上,研究焊枪摆动对熔池行为的影响.建立了焊枪摆动的TIG填丝焊的数学模型,并利用示踪粒子的方法,对比普通TIG填丝焊和摆动TIG填丝焊的熔池温度场、流场及熔滴质量分布.结果表明,普通TIG填丝焊与摆动TIG填丝焊熔池轮廓基本一样,但摆动TIG焊通过摆动电弧,导致熔池内流场行为发生了改变,进而影响了温度场的分布,使熔池内温度分布更加均匀;示踪粒子分布表明,在TIG填丝焊中,摆动TIG填丝焊能够使熔滴金属更加均匀的分布在熔池中.
    Abstract: In order to make the liquid metal distribution of TIG welding pool more uniform, the influence of welding torch swing on the behavior of weld pool is studied based on ordinary TIG wire-filled welding. The mathematical model of TIG wire-filled welding for welding torch swing is established, and the tracer particles are utilized. The method compares the temperature field, flow field and droplet mass distribution of ordinary TIG wire-filled and swing TIG wire-filled. The analysis shows that the ordinary TIG wire-filled weld pool profile is basically the same as the swing TIG wire-filled weld pool, but the swing TIG welding changes the flow field behavior in the weld pool by swing arc, which affects the distribution of temperature field and makes the temperature distribution in the weld pool more uniform. The tracer particles distribution shows that in TIG wire-filled welding, the swing TIG wire-filled welding can make the droplet metal more evenly distributed in the weld pool.
  • [1] Liu H H, Chen H J, Liu W J, et al. Numerical analysis of flow-thermal coupling in micro-plasma welding pool of thin-wall part[J]. China Welding, 2018, 27(2):13-18.
    [2] Yudodibroto B Y B, Hermans M J M, Hirata Y, et al. Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding[J]. Science&Technology of Welding&Joining, 2004, 9(2):163-168.
    [3] 武传松,陈定华,吴林. TIG焊接熔池中的流体流动及传热过程的数值模拟[J].焊接学报, 1988, 9(4):62-68 Wu Chuansong, Chen Dinghua, Wu Lin. Numerical simulation of the fluid flow and heat transfer in TIG welding molten pools[J]. Transactions of the China Welding Institution, 1988, 9(4):62-68
    [4] 陈树君,张所来,黄宁,等.电弧熔丝脉冲GTAW熔滴过渡行为分析[J].焊接学报, 2017, 38(1):17-21 Chen Shujun, Zhang Suolai, Huang Ning, et al. Droplet transfer of arcing-wire pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1):17-21
    [5] 周啸尘,李桓,宋春光,等.脉冲TOPTIG焊熔滴过渡特性分析[J].焊接学报, 2017, 38(7):45-48 Zhou Xiaochen, Li Huan, Song Chunguang, et al. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. Transactions of the China Welding Institution, 2017, 38(7):45-48
    [6] 武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟[J].金属学报, 1998, 34(4):416-422 Wu Chuansong, Zheng Wei, Wu Lin. Numerical simulation of TIG weld pool behavior under the action of pulsed current[J]. Acta Metallurgica Sinica, 1998, 34(4):416-422
    [7] 武传松.焊接热过程与熔池形态[M].北京:机械工业出版社, 2008.
    [8] 高如超,饶政华,李芸霄,等.脉冲GTAW熔池行为和焊缝成形的三维数值模拟[J].中南大学学报(自然科学版), 2013(11):4712-4719 Gao Ruchao, Rao Zhenghua, Li Yunxiao, et al. Three-dimensional modeling of weld pool dynamics and weld bead formation during pulsed GTAW[J]. Journal of Central South University (Science and Technology), 2013(11):4712-4719
    [9] 黄健康,郭朝博,石玗,等. TIG焊熔池在阶跃参数下的数值分析[J].焊接学报, 2012, 33(9):17-20 Huang Jiankang, Guo Chaobo, Shi Yu, et al. Numerical analysis of TIG welding pool at step parameter[J]. Transactions of the China Welding Institution, 2012, 33(9):17-20
    [10] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
    [11] Mahajan S, Biradar N S, Raman R, et al. Effect of mechanical arc oscillation on the grain structure of mild steel weld metal[J]. Transactions of the Indian Institute of Metals, 2012, 65(2):171-177.
    [12] Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds[J]. Materials Science&Engineering A, 2005, 404(1):227-234.
    [13] Sundaresan S, Ram G D J. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α-β titanium alloys[J]. Science and Technology of Welding and Joining, 1999, 4(3):151-160.
    [14] Sivaprasad K, Raman S G S, Mastanaiah P, et al. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments[J]. Materials Science and Engineering:A, 2006, 428(1-2):327-331.
    [15] Kou S, Le Y. Improving weld quality by low-frequency arc oscillation[J]. Welding Journal, 1985, 64(3):51-55.
计量
  • 文章访问数:  350
  • HTML全文浏览量:  9
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-23

目录

    /

    返回文章
    返回