高级检索

纵向磁场下GTAW电弧传热与流动数值模拟

刘政军, 李宇航, 苏允海

刘政军, 李宇航, 苏允海. 纵向磁场下GTAW电弧传热与流动数值模拟[J]. 焊接学报, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138
引用本文: 刘政军, 李宇航, 苏允海. 纵向磁场下GTAW电弧传热与流动数值模拟[J]. 焊接学报, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138
LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of heat transfer and fluid flow for arc plasma in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138
Citation: LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of heat transfer and fluid flow for arc plasma in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138

纵向磁场下GTAW电弧传热与流动数值模拟

基金项目: 辽宁省自然科学基金资助项目(20072041);辽宁省教育厅基金资助项目(201124125)

Numerical simulation of heat transfer and fluid flow for arc plasma in gas tungsten arc welding

  • 摘要: 针对外加纵向磁场(LMF)下的焊接电弧的传热与流动特性,建立基于磁流体动力学的二维轴对称数学模型,将流体动力学理论与麦克斯韦方程组进行耦合对电弧的温度场、电势场、电弧压力以及电流密度等进行求解,又分别对磁感应强度为0与0.06 T下的阳极热进行定量分析与对比. 结果表明,外加LMF驱动带电粒子旋转并使电弧扩张,其中心出现负压并形成反重力流将阳极热汇聚于阴极附近,同时电弧因高速旋转增大热对流损失,降低焊接热效率.当磁感应强度为0.06 T时,阳极表面的电流密度、热流密度以及电弧压力等由中心分布转化为双峰分布模式.
    Abstract: An axisymmetrical model based on the magnectohydrodynamics (MHD) is established to study the effect of external longitudinal magnetic field (LMF) on heat transfer and fluid flow characteristics of welding arc. The profiles of temperature and voltage drop, distributions of arc pressure and current density, etc., are simulated by utilizing the fluid dynamic theory coupled with Maxwell equations. The quantitative analysis and comparison of anodic heat fluxes in the cases of LMF strength of 0 T and 0.06 T applied are also obtained. The results show that the applied LMF could drive particles to rotate so as to expand the arc, a negative pressure area appears at the center and induces an anti-gravity flow through the arc core, concentrating the anodic energy to the cathode. Meanwhile, the arc rotating at high speed could increase the convection heat loss, and reduce the thermal efficiency. When the magnetic induction strength is 0.06 T, the distribution of current density, anodic heat flux and arc pressure shift from the arc center to periphery and shows a bimodal pattern.
  • [1] 罗键,贾昌申,王雅生,等.外加纵向磁场GTAW焊接机理I.电弧特性[J].金属学报, 2001, 37(2):212-216 Luo Jian, Jia Changshen, Wang Yasheng, et al. Mechanism of the gas tungsten-arc welding in longitudinal magnetic field controlling-I. Property of the arc[J]. Acta Metallurgica Sinica, 2001, 37(2):212-216
    [2] Tanaka M, Terasaki H, Ushio M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical and Materials Transactions A, 2001, 33(7):2043-2052.
    [3] Luo Jian, Yao Zongxiang, Xue Keliang. Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(1-4):647-661.
    [4] Yin Xianqing, Gou Jianjun, Zhang Jianxun, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic[J]. Journal of Physics D:Applied Physics, 2012, 45(28):5203-5300.
    [5] Chen Tang, Zhang Xiaoming, Bing Bai, et al. Numerical study of DC argon arc with axial magnetic fields[J]. Plasma Chemistry and Plasma Processing, 2015, 35(1):61-74.
    [6] Lu Shanping, Dong Wenchao, Li Dianzhong, et al. Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen[J]. Computational Materials Science, 2009, 45(2):327-335.
    [7] Pan Jiajing, Yang Lijun, Hu Shengsun. Simulation and analysis of heat transfer and fluid flow characteristics of variable GTAW process based on a tungsten-arc-specimen couples model[J]. International Journal of Heat and Mass Transfer, 2016, 96:346-352.
    [8] 安滕宏平.焊接电弧现象[M].北京:机械工业出版社, 1985.
    [9] Boulos M I, Fauchais P, Pfender E. Thermal plasmas-fundamentals and applications[M]. New York:Springer, 1994.
    [10] Savas A, Ceyhun V. Finite element analysis of GTAW arc under different shielding gases[J]. Computational Materials Science, 2011, 51(1):53-71.
    [11] Zhou X, Heberlein J. An experimental investigation of factors affecting arc-cathode erosion[J]. Journal of Physics D:Applied Physics, 1998, 31(19):2577-2590.
    [12] Tanaka M, Lowke J J. Predictions of weld pool profiles using plasma physics[J]. Journal of Physics D:Applied Physics, 2007, 40(1):R1-R23.
  • 期刊类型引用(3)

    1. 付瑜,韩绍华,薛丁琪. 基于金属蒸汽和外加磁场的MIG电弧模拟. 兵器材料科学与工程. 2021(03): 94-98 . 百度学术
    2. 韩庆璘,李大用,李鑫磊,张广军. GTAW多相流数值模拟的相界面实时标记方法. 焊接学报. 2021(06): 58-63+100 . 本站查看
    3. 周祥曼,刘练,陈永清,袁有录,田启华,杜义贤,何青松,付君健. 外加变位磁场作用GTAW焊接电弧的数值模拟. 三峡大学学报(自然科学版). 2021(05): 101-106+112 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  431
  • HTML全文浏览量:  14
  • PDF下载量:  84
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-01-20

目录

    /

    返回文章
    返回