高级检索

TiNb钢焊接热影响区微观组织与冲击性能演变规律

付魁军, 高铭泽, 冷雪松, 闫久春, 唐浩洋

付魁军, 高铭泽, 冷雪松, 闫久春, 唐浩洋. TiNb钢焊接热影响区微观组织与冲击性能演变规律[J]. 焊接学报, 2019, 40(5): 36-41. DOI: 10.12073/j.hjxb.2019400124
引用本文: 付魁军, 高铭泽, 冷雪松, 闫久春, 唐浩洋. TiNb钢焊接热影响区微观组织与冲击性能演变规律[J]. 焊接学报, 2019, 40(5): 36-41. DOI: 10.12073/j.hjxb.2019400124
FU Kuijun, GAO Mingze, LENG Xuesong, YAN Junchun, TANG Haoyang. Evolution of microstructure and impact property in welding HAZ of TiNb steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 36-41. DOI: 10.12073/j.hjxb.2019400124
Citation: FU Kuijun, GAO Mingze, LENG Xuesong, YAN Junchun, TANG Haoyang. Evolution of microstructure and impact property in welding HAZ of TiNb steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 36-41. DOI: 10.12073/j.hjxb.2019400124

TiNb钢焊接热影响区微观组织与冲击性能演变规律

基金项目: 海洋装备用金属材料国家重点实验室开放基金资助项目(SKLMEA-K201702)

Evolution of microstructure and impact property in welding HAZ of TiNb steel

  • 摘要: 利用热模拟技术研究了焊接热循环参数对高热输入焊接用TiNb钢焊接热影响区粗晶区的组织及冲击韧性的影响规律. 结果表明,TiNb钢焊接热循环峰值温度升高,珠光体和铁素体的含量明显减少,贝氏体的含量增多,贝氏体板条组织明显粗化,导致冲击韧性下降;高温停留时间延长,贝氏体和珠光体含量大幅降低,多边形铁素体含量增加,高温停留时间为10 s以上时,多边形铁素体组织粗化严重,冲击韧性急剧降低. 在合适的冷却时间条件下,以晶粒细小的针状铁素体组织为主,冲击韧性达到最大值. 较低的热循环峰值温度、较短的高温停留时间和合适的冷却时间,可以获得晶粒细小的铁素体组织,从而可以显著提高热影响粗晶区的冲击韧性.
    Abstract: The influence of welding thermal cycle parameters on the microstructure and impact property of the coarse grain zone in the HAZ of TiNb steel for large-line energy welding was studied by thermal simulation technology. The results show that the coarse-grained microstructure of the heat-affected zone of TiNb steel is mainly composed of bainite, ferrite and pearlite. When the peak temperature of thermal cycle increases, the content of pearlite and ferrite decreases, and the content of bainite increases, the slab structure is obviously roughened, resulting in the decrease of impact toughness, the prolonging of high temperature residence time, the reduction of bainite and pearlite content, and the increasing of polygonal ferrite content. The high-temperature ferrite structure is thick when the high temperature residence time is above 10 s. Then the impact toughness is drastically reduced. Under the appropriate cooling time conditions, the main microstructure is fine acicular ferrite structure, and the impact toughness reaches the maximum. With a lower thermal cycle peak temperature, a shorter high temperature residence time and a suitable cooling time, a fine grained ferrite structure can be obtained, which can significantly improve the impact toughness of the heat affected coarse grain zone.
  • [1] 廖建国.大线能量焊接用厚钢板的发展[J].宽厚板, 2002, 8(2):44-48 Liao Jianguo. Development in structural steel plates for high-heat input welding[J]. Lenient Plate, 2002, 8(2):44-48
    [2] 习小军,赖朝彬,吴春红,等.大线能量焊接船板钢的研究现状与发展[J].有色金属科学与工程, 2016, 7(5):56-59 Xi Xiaojun, Lai Chaobin, Wu Chunhong, et al. Research situation and development of ship plate steel by high heat input welding[J]. Nonferrous Metals Science and Engineering, 2016, 7(5):56-59
    [3] Bonnevie E, Ferrière G, Ikhlef A, et al. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels[J]. Material Science Engineering:A, 2004, 385(1-2):352-358.
    [4] Zhang L, Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel[J]. Materials Science&Engineering A, 2014, 613:326-335.
    [5] 李静,王华,曲圣昱,等.焊接热循环参数对大线能量焊接用钢EH40热影响区组织和性能的影响[J].北京科技大学学报, 2012, 34(7):788-792 Li Jing, Wang Hua, Qu Shengyu, et al. Effect of welding thermal cycle parameters on the microstructure and propertise in the heat affected zone of steel EH40 for high heat input welding[J]. Journal of University of Science and Technology Beijing, 2012, 34(7):788-792
    [6] 宋峰雨,李艳梅,王平,等.大热输入焊接接头组织性能研究[J].内蒙古工业大学学报, 2017, 36(1):6-9 Song Fengyu, Li Yanmei, Wang Ping, et al. Study on micostructure properties of welded joints with high heat input welding[J]. Journal of Inner Monuolia University of Technology, 2017, 36(1):6-9
    [7] 徐学利,辛希贤,石凯,等.焊接热循环对X80管线钢粗晶区韧性和组织的影响[J].焊接学报, 2005, 26(8):69-72 Xu Xueli, Xin Xixian, Shi Kai. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. Transaction of the China Welding Institute, 2005, 26(8):69-72
    [8] 胡传顺,顾玉熹.热循环峰值温度对HQ100钢热影响区组织和性能的影响[J].金属热处理, 1999, 11:11-13 Hu Chuanshun, Gu Yuxi. Effect of thermal cycle peak temperature on microstructure and properties of heat affected zone of HQ100 Steel[J]. Metal Heat Treatment, 1999, 11:11-13
    [9] Zhang L P, Davis C L, Strang W M. Effect of TiN particles and microstructures on fracture toughness in simulated heat-affected-zones of a structural steel[J]. Metallurgical and Material Transactions, 1999, 30A (8):2089-2096.
    [10] 赵琳,张旭东,陈武柱. 800MPa级低合金钢焊接热影响区韧性的研究[J].金属学报, 2015, 41(4):392-393 Zhao Lin, Zhang Xudong, Chen Wuzhu. Toughness of heat-affected zone of 800 MPa grade low alloy steel[J]. Acta Metallurgica Sinica, 2015, 41(4):392-393
  • 期刊类型引用(11)

    1. 贾金龙,龙健,张林杰. 30 mm厚TC4钛合金电子束焊接头的高周疲劳与裂纹扩展速率. 焊接. 2024(01): 27-32 . 百度学术
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 田助新,吴晓峰,杨梦. 焊接表面对线性摩擦焊轴向缩短量的影响. 航空精密制造技术. 2023(05): 33-34+70 . 百度学术
    4. 李鳌,刘剑雄,曾家兴,万祥明,贾有东,刘建新. 线性摩擦焊装备研究进展与应用. 农业装备与车辆工程. 2022(04): 74-77 . 百度学术
    5. 杜随更,刘冠翔,李菊. 异质TC17线性摩擦焊接头焊后时效处理组织与性能. 焊接学报. 2022(07): 7-13+113-114 . 本站查看
    6. 常川川,李菊,崔洋,敖斌,夏昌龙,金俊龙. TC21钛合金线性摩擦焊接头组织及性能分析. 稀有金属材料与工程. 2022(10): 3843-3849 . 百度学术
    7. 李彦默,郭小辉,陈斌,李培跃,郭倩颖,丁然,余黎明,苏宇,李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能. 金属学报. 2021(03): 363-374 . 百度学术
    8. 高天悦. 体育器械用TC4钛合金的力学与耐磨性能研究. 合成材料老化与应用. 2021(02): 112-114 . 百度学术
    9. 李睿,周军,张春波,乌彦全,梁武,秦丰. TC4/Ti17异质钛合金线性摩擦焊接头组织及力学性能. 机械制造文摘(焊接分册). 2021(02): 11-17 . 百度学术
    10. 陈一鑫,李晓泉,郝本行,云叶菱,杜永勤. 镍基合金异质熔焊9Ni钢接头组织和性能及纳米压痕分析. 焊接学报. 2021(05): 90-96+104 . 本站查看
    11. 金俊龙,陶军,季亚娟,张传臣. TC17钛合金嵌入式线性摩擦焊接头组织与性能. 焊接学报. 2021(05): 18-22+98-99 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  347
  • HTML全文浏览量:  8
  • PDF下载量:  77
  • 被引次数: 14
出版历程
  • 收稿日期:  2018-09-21

目录

    /

    返回文章
    返回