高级检索

X52管线钢水下摩擦圆锥塞焊接头组织特征

熊俊珍, 杨新岐, 林伟, 刘凯旋

熊俊珍, 杨新岐, 林伟, 刘凯旋. X52管线钢水下摩擦圆锥塞焊接头组织特征[J]. 焊接学报, 2019, 40(5): 6-12. DOI: 10.12073/j.hjxb.2019400119
引用本文: 熊俊珍, 杨新岐, 林伟, 刘凯旋. X52管线钢水下摩擦圆锥塞焊接头组织特征[J]. 焊接学报, 2019, 40(5): 6-12. DOI: 10.12073/j.hjxb.2019400119
XIONG Junzhen, YANG Xinqi, LIN Wei, LIU Kaixuan. Microstructural features of underwater wet friction taper plug welded joints for X52 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 6-12. DOI: 10.12073/j.hjxb.2019400119
Citation: XIONG Junzhen, YANG Xinqi, LIN Wei, LIU Kaixuan. Microstructural features of underwater wet friction taper plug welded joints for X52 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 6-12. DOI: 10.12073/j.hjxb.2019400119

X52管线钢水下摩擦圆锥塞焊接头组织特征

基金项目: 国家自然科学基金资助项目(51475327)

Microstructural features of underwater wet friction taper plug welded joints for X52 pipeline steel

  • 摘要: 对X52管线钢进行了水下摩擦圆锥塞焊工艺试验,对不同焊接工艺参数下接头的微观组织进行了金相显微镜及扫描电镜观测,探讨了工艺参数对X52管线钢水下摩擦圆锥塞焊接头组织的影响. 结果表明,接头可以分为锻造区、最终摩擦界面、剪切变形区、结合区及热影响区. 其中剪切变形区呈层状结构,所形成的焊缝微观组织极不均匀,且出现粗大晶粒. 相比于焊接转速,轴向压力对X52管线钢水下摩擦塞焊接头组织的影响更显著. 摩擦塞焊接头组织与传统摩擦焊接头晶粒细化的特征不同,这是由于在“封闭式”摩擦焊过程中塞焊缝主要由剪切变形区组成.
    Abstract: The experiments of underwater wet friction taper plug welding were performed on API 5L X52 pipeline steel. The microstructure of joints with different welding parameters was observed by optical and scanning electron microscope, and the effects of welding parameters on microstructure were analyzed. The results show that the joints can be divided into forged zone (FZ), final frictional plane (FFP), shear deformation zone (SDZ), bonding zone (BZ) and heat-affected zone (HAZ). The SDZ presents layered structure containing coarse grains,and the microstructure of welds is extremely inhomogeneous. The axial force has a greater impact on microstructure of welds compared with rotational speed. The microstructure of underwater wet friction taper plug welded joint has a big difference with that of traditional friction welded joints which is characterized by fine-grained microstructure. These behaviors are caused by the welds mainly consisting of shear deformation zone during "closed mode" friction welding.
  • [1] Thomas W M, Icholas E D, Jones S R, et al. Friction forming:International Patent, WO 93/04813[P]. 1993–03–18.
    [2] 陈家庆,焦向东,周灿丰,等.新型材料成形加工技术-摩擦叠焊[J].焊接学报, 2007, 28(9):108-112 Chen Jiaqing, Jiao Xiangdong, Zhou Canfeng, et al. Friction stitch welding-A new kind of material forming technology[J]. Transactions of the China Welding Institution, 2007, 28(9):108-112
    [3] Łabanowski J, Fydrych D, Rogalski G. Underwater welding-a review[J]. Advances in Materials Sciences, 2008, 8(3):11-22
    [4] Li H, Liu D, Tang D, et al. Microstructure and mechanical properties of E36 steel joint welded by underwater wet welding[J]. China Welding, 2016, 25(1):30-35.
    [5] Meyer A. Friction hydro pillar processing:bonding mechanism and properties[D]. Geesthacht:GKSS-Forschungszentrum, 2003.
    [6] Meinhardt C P, Chludzinski M, Ribeiro R F, et al. Evaluation of friction hydro-pillar processing welding in duplex stainless steels (UNS S31803)[J]. Journal of Materials Processing Technology, 2017, 246:158-166.
    [7] Yin Y, Yang X, Cui L, et al. Material flow influence on the weld formation and mechanical performance in underwater friction taper plug welds for pipeline steel[J]. Materials&Design, 2015, 88:990-998.
    [8] Unfried, J S, Paes M T P, Hermenegildo T F C, et al., Study of microstructural evolution of friction taper plug welded joints of C-Mn steels[J]. Science and Technology of Welding and Joining, 2010, 15(6):506-513.
    [9] Hattingh, D G, Bulbring D L H, Els-botes A, et al., Process parameter influence on performance of friction taper stud welds in AISI 4140 steel[J]. Materials&Design, 2011, 32(6):3421-3430.
    [10] Teng J, Wang D, Wang Z, et al. Repair of arc welded DH36 joint by underwater friction stitch welding[J]. Materials&Design, 2017, 118:266-278.
    [11] Xiong J, Yang X, Lin W, et al. Microstructural characteristics and mechanical heterogeneity of underwater wet friction taper plug welded joints for low-alloy pipeline steel[J]. Materials Science&Engineering A, 2017, 695:279-290.
  • 期刊类型引用(9)

    1. 高吉昌,门秀花,姜帅,付秀丽,蒋振峰,李艳. 高铬铸铁叶片堆焊工艺研究进展. 材料导报. 2024(17): 195-203 . 百度学术
    2. 刘润涛,朱言利,王泽力,刘黎明. 尖角磁场极性对双钨极氩弧焊电弧形态和焊缝特征的影响. 焊接学报. 2023(03): 37-43+131 . 本站查看
    3. 程小华,李小宇. 核电用不锈钢双钨极氩弧焊接头组织与性能. 焊接学报. 2022(07): 108-112+120 . 本站查看
    4. 俞雄军,苏斌. 双钨极氩弧焊技术的发展及其在核承压设备耐腐蚀层堆焊中的应用. 东方电气评论. 2022(04): 64-68 . 百度学术
    5. 袁亮文,刘万存,高永光,肖鹏. 基于DeviceNet总线的双钨极堆焊系统设计及工艺性验证. 电焊机. 2020(04): 41-46+137 . 百度学术
    6. 张丹丹. 关于双钨极氩弧焊耦合电弧压力分析. 现代制造技术与装备. 2019(03): 140-141 . 百度学术
    7. 吴统立,杨嘉佳,王克鸿,郭顺,高琼. 高频复合双钨极氩弧焊电弧行为规律. 电焊机. 2019(05): 87-91 . 百度学术
    8. 吴统立,王克鸿,冯曰海. 高频复合双钨极氩弧焊电源研制. 电焊机. 2019(06): 83-88 . 百度学术
    9. 刘云,杨军. Q235B/SUS304螺旋冶金复合管埋弧焊接头的组织和性能. 焊接. 2019(10): 38-46+51+67 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  320
  • HTML全文浏览量:  9
  • PDF下载量:  51
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-04-29

目录

    /

    返回文章
    返回