Effect of graphene nanosheets on melting point and wettability of AgCuTi filler
-
摘要: 采用球磨法在AgCuTi钎料中添加不同质量分数的石墨烯纳米片(GNSs)制备出复合钎料,利用差示扫描量热仪(DSC),SEM以及XRD等方法研究了微量的石墨烯纳米片对AgCuTi钎料微观形貌、熔点以及在蓝宝石表面润湿性的影响. 结果表明,球磨法对GNSs-AgCuTi复合钎料的物相没有影响,石墨烯均匀地分散在AgCuTi颗粒周围;复合钎料熔点随着石墨烯含量的增加而降低,当石墨烯含量为0.5%,熔点降低了3.2 ℃;微量的石墨烯,改善钎料在蓝宝石表面的润湿性,0.3%GNSs-AgCuTi复合钎料的润湿角减小了4.4°,铺展面积增加了10 mm2,而过多的石墨烯也使得复合钎料的润湿性变差;石墨烯与元素Ti反应生成TiC,复合钎料与蓝宝石界面反应产物为Ti3Cu3O相.Abstract: Graphene nanosheets (GNSs) with different mass fractions were added to the AgCuTi filler by ball milling. The effects of trace amounts of graphene nanosheets on the morphology, melting point and wettability of AgCuTi fillers were investigated by differential scanning calorimetry (DSC), SEM and XRD. The results showed that the ball milling method had no effect on the phase of the GNSs-AgCuTi composite filler, and the graphene was uniformly dispersed around the AgCuTi particles. The melting point of the composite filler decreased as the graphene content increased. When the graphene content was 0.5%, the melting point was reduced by 3.2 °C. A trace amount of graphene improved the wettability of the filler on the sapphire surface. The wetting angle of the 0.3% GNSs-AgCuTi composite brazing filler was reduced by 4.4°, and the spreading area was increased by 10 mm2, while the excessive graphene also deteriorated the wettability of the composite brazing filler. Graphene reacted with the element Ti to form TiC. The interfacial reaction product of the composite filler and sapphire was Ti3Cu3O phase.
-
Keywords:
- composite filler /
- sapphire /
- melting point /
- wettability
-
-
[1] 毛 明, 黄 斐. 银铜钛活性钎料制备工艺的选择[J]. 科技创新与应用, 2016(1): 120 − 121 [2] Mao Ming, Huang Fei. Selection of preparation process of silver copper titanium active solder[J]. Technological Innovation and Application, 2016(1): 120 − 121
[3] Du Jinsong, Yan Jiazhen, Cao Jianguo, et al. Numerical simulation analysis of residual stress of sapphire/4J33 alloy brazed joints[J]. Transactions of the China Welding Institution, 2017, 38(8): 87 − 90
[4] Xin C, Li N, Yan J, et al. Effects of Ti activity on mechanical properties and microstructures of Al2O3/Ag-Cu-Ti/Fe-Ni-Co brazed joints[J]. Rare Metal Materials & Engineering, 2018, 47(4): 1031 − 1036.
[5] Yan Shaojiu, Chen Xiang, Hong Qihu, et al. Research progress of graphene reinforced aluminum-based nanocomposites[J]. Journal of Aeronautical Materials, 2016, 36(3): 57 − 70
[6] 杜金松, 颜家振, 曹建国, 等. 蓝宝石/4J33合金钎焊接头残余应力的数值模拟分析[J]. 焊接学报, 2017, 38(8): 87 − 90 [7] Yu Weiyuan, Chen Xueding, Lu Wenjiang. Properties of rapidly solidified Al-Si-Cu based brazing filler metal[J]. Transactions of the China Welding Institution, 2004, 25(2): 69 − 72
[8] Shen J, Chan Y C. Research advances in nano-composite solders[J]. Microelectronics Reliability, 2009, 49(3): 223 − 234.
[9] 燕绍九, 陈 翔, 洪起虎, 等. 石墨烯增强铝基纳米复合材料研究进展[J]. 航空材料学报, 2016, 36(3): 57 − 70 [10] Sharma A, Sohn H R, Jung J P. Effect of graphene nanoplatelets on wetting, microstructure, and tensile characteristics of Sn-3.0Ag-0.5Cu (SAC) alloy[J]. Metallurgical & Materials Transactions A, 2016, 47(1): 494 − 503.
[11] Chen G, Wu F, Liu C, et al. Microstructures and properties of new Sn-Ag-Cu lead-free solder reinforced with Ni-coated graphene nanosheets[J]. Journal of Alloys & Compounds, 2016, 656: 500 − 509.
[12] Hu X, Chan Y C, Zhang K, et al. Effect of graphene doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis[J]. Journal of Alloys & Compounds, 2013, 580(32): 162 − 171.
[13] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60 − 63.
[14] Gleiter H. Nanostructured materials: basic concepts and microstructure[J]. Acta Materialia, 2000, 48(1): 1 − 29.
[15] Kumar K M, Kripesh V, Tay A A O. Influence of single-wall carbon nanotube addition on the microstructural and tensile properties of Sn-Pb solder alloy[J]. Journal of Alloys & Compounds, 2008, 455(1-2): 148 − 158.
[16] Xue Z Q, Liu W M, Hou S M, et al. Study on electronic properties of single-wall carbon nanotubes[J]. Materials Science & Engineering C, 2001, 16(1): 17 − 21.
[17] 黄 鹏. 低熔点高强度铝合金钎料制备与性能研究[D]. 杭州:浙江大学, 2013. [18] 俞伟元, 陈学定, 路文江. 快速凝固Al-Si-Cu基钎料的性能[J]. 焊接学报, 2004, 25(2): 69 − 72 [19] Nai S M L, Wei J, Gupta M. Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes[J]. Materials Science & Engineering A, 2006, 423(1): 166 − 169.
[20] Mackerle, Jaroslav. Finite element analysis and simulation of adhesive bonding, soldering and brazing: a bibliography (1976 – 1996)[J]. Modelling and Simulation in Materials Science and Engineering, 1997, 5(2): 159 − 185.
[21] Gao F, Takemoto T, Nishikawa H. Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing[J]. Materials Science & Engineering A, 2006, 420(1–2): 39 − 46.
[22] Liu D, Song Y, Zhou Y, et al. Brazing of C/C composite and Ti-6Al-4V with graphene strengthened AgCuTi filler: Effects of graphene on wettability, microstructure and mechanical properties[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1602 − 1608.
[23] Kelkar G P, Spear K E, Carim A H. Thermodynamic evaluation of reaction products and layering in brazed alumina joints[J]. Journal of Materials Research, 1994, 9(9): 2244 − 2250.
[24] Ichimori T, Iwamoto C, Tanaka S. Nanoscopic analysis of a Ag-Cu-Ti/sapphire brazed interface[J]. Materials Science Forum, 1999, 294–296: 337 − 340.
-
期刊类型引用(11)
1. 王彦龙,曹旭武,丁正祥,闫德俊,彭卫华. 船用新型TA3钛合金深熔TIG焊接头组织与力学性能研究. 电焊机. 2024(12): 56-61 . 百度学术
2. 刘赛智,刘禹尧,强斌,姚昌荣,李亚东. 钢箱形杆件焊接制造变形模拟研究. 四川建筑. 2023(01): 196-200+203 . 百度学术
3. 马志文,梁慧丽. 极端动力荷载下的风力发电塔筒生产法兰内倾度控制技术. 机械设计与制造工程. 2023(05): 117-121 . 百度学术
4. 殷亚运,徐希军,雷小伟,崔永杰,张浩. 小孔TIG焊技术在中大厚度TC4板上的应用研究. 热加工工艺. 2023(11): 10-14 . 百度学术
5. 徐良,谷世伟,杨海锋,宋坤林,李康宁,韩来慧. 碳纤维增强复合材料与6061铝合金激光连接仿真. 焊接学报. 2023(11): 42-51+131 . 本站查看
6. 汪家政,刘在良,李川江. HTIG焊接技术在造船工程中的应用试验. 机械研究与应用. 2022(02): 202-205 . 百度学术
7. 唐君才,陈和,魏占静. 304不锈钢K-TIG焊接工艺. 机械制造文摘(焊接分册). 2022(03): 37-40 . 百度学术
8. 杨义成,陈健,黄瑞生,徐锴,孙谦,杜兵. 空心钨极焊接关键技术问题及发展现状. 焊接. 2021(05): 1-8+63 . 百度学术
9. 甘国梁. 加油站双层储油罐底板施工变形控制方法研究. 粘接. 2021(11): 82-87 . 百度学术
10. 吴健文,陈浩宇,高阳,范文艳,闫德俊,饶宇中,王振民. 锁孔TIG焊接技术的研究进展. 精密成形工程. 2020(04): 1-9+193 . 百度学术
11. 徐良,欧阳凯,杨海锋. K-TIG焊接动态过程及组织和性能分析. 焊接学报. 2020(08): 68-72+101 . 本站查看
其他类型引用(8)
计量
- 文章访问数: 213
- HTML全文浏览量: 8
- PDF下载量: 8
- 被引次数: 19