高级检索

热处理对Ti2AlNb线性摩擦焊接头组织与硬度的影响

贺建超, 张田仓, 李菊

贺建超, 张田仓, 李菊. 热处理对Ti2AlNb线性摩擦焊接头组织与硬度的影响[J]. 焊接学报, 2019, 40(4): 119-124. DOI: 10.12073/j.hjxb.2019400111
引用本文: 贺建超, 张田仓, 李菊. 热处理对Ti2AlNb线性摩擦焊接头组织与硬度的影响[J]. 焊接学报, 2019, 40(4): 119-124. DOI: 10.12073/j.hjxb.2019400111
HE Jianchao, ZHANG Tiancang, LI Ju. Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 119-124. DOI: 10.12073/j.hjxb.2019400111
Citation: HE Jianchao, ZHANG Tiancang, LI Ju. Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 119-124. DOI: 10.12073/j.hjxb.2019400111

热处理对Ti2AlNb线性摩擦焊接头组织与硬度的影响

详细信息
    作者简介:

    贺建超,男,1985年出生,博士,高级工程师. 主要从事材料的固相焊接技术,材料的辐照效应与表征. 发表论文8篇. Email: hjch1985@gmail.com

  • 中图分类号: TG 406

Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint

  • 摘要: 对Ti2AlNb合金进行了线性摩擦焊试验以及焊后热处理研究. 着重分析了Ti2AlNb合金线性摩擦焊接头焊合区,热力影响区的显微组织特点以及组织演变规律,结合焊后热处理,探讨了热处理温度对接头的影响规律. 试验结果表明,采用线性摩擦焊可实现Ti2AlNb合金可靠连接,接头无微裂纹、孔洞等缺陷. 焊态Ti2AlNb合金接头的焊合区为亚稳态β组织和极少量的变形α2相,热力影响区含变形α2相和O相,以及亚稳态β相. 热处理后,针状O相在亚稳态β相中析出,并随着热处理温度升高(从700 ~ 900 ℃)而长大. 700 ℃热处理后,接头显微硬度明显升高,但随着热处理温度的升高,显微硬度下降.
    Abstract: Linear friction welding (LFW) test and post-weld heat treatment of welded joints of Ti2AlNb alloy were carried out. The microstructure evolution in recrystallization zone and thermo-mechanical affected zone of Ti2AlNb LFW joint with post heat treatment were analyzed. The results showed that high quality joint of Ti2AlNb without microcrack and microvoid could be formed by LFW. WZ (weld zone) consisted of metastable β phase and few of twisted α2. TMAZ was made of O phase, metastable β phase and much of twisted α2 phase. After heat treatment, metastable β broke down into O lamina precipitate and the size of O lamina increased with the temperature from 700 °C to 900 °C. Microhardness increased obviously after heat treatment at 700 °C while it decreased with the increasing of temperature.
  • [1] 郭和平, 曾元松, 李志强. O相合金Ti2AlNb的超塑性研究进展[J]. 航空制造技术, 2009, 10: 64 − 67
    [2]

    Guo Heping, Zeng Yuansong, Li Zhiqiang. Research progress of superplasticity of intermetallic Ti2AlNb orthorhombic alloys[J]. Aeronautical Manufacturing Technology, 2009, 10: 64 − 67

    [3]

    Froes F H, Suryanarayana C, Eliezer D. Review: synthesis, properties and applications of titanium aluminides[J]. Journal of Materials Science, 1992, 27: 5113 − 5140.

    [4]

    Feng Aihan, Li Bobo, Shen Jun. Recent advances on Ti2AlNb-based alloys[J]. Journal of Materials and Metallurgy, 2011, 10(1): 30 − 38

    [5]

    Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide[J]. Advance Engineering Material, 2001, 3: 851 − 864.

    [6]

    Wu Huiqiang, Feng Jicai, He Jingshan et al. Structure and crack forming susceptibility of TiAl based alloy joints by electron beam welding[J]. Journal of Materials Engineering, 2005, 4: 7 − 10

    [7]

    Zou Guisheng, Bai Hailin, Xie Erhu, et al. Solid diffusion bonding of Ti-22Al-25Nb O phase alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(4): 577 − 584

    [8] 冯艾寒, 李渤渤, 沈 军. Ti2AlNb 基合金的研究进展[J]. 材料与冶金学报, 2011, 10(1): 30 − 38
    [9] 吴会强, 冯吉才, 何景山, 等. 电子束焊接TiAl基合金接头组织结构及其裂纹产生的敏感性[J]. 材料工程, 2005, 4: 7 − 10
    [10]

    Zhang Tiancang, Li Jing, Ji Yajuan, et al. Structure and mechanical properties of TC4 linear friction welding joint[J]. Transactions of the China Welding Institution, 2010, 31(2): 53 − 56

    [11] 邹贵生, 白海林, 谢二虎. O相合金Ti-22Al-25Nb固态扩散连接[J]. 中国有色金属学报, 2008, 18(4): 577 − 584
    [12]

    Ji Yajuan, Liu Yanbing, Zhang Tiancang, et al. Structure and mechanical properties of TC4/TC17 linear friction welding joint[J]. Transactions of the China Welding Institution, 2012, 33(10): 109 − 112

    [13] 张田仓, 李 晶, 季亚娟, 等. TC4钛合金线性摩擦焊接头组织和力学性能[J]. 焊接学报, 2010, 31(2): 53 − 56
    [14]

    Dalgaard E, Wanjara P, Gholipour J, et al. Linear friction welding of a near-b titanium alloy[J]. Acta Materialia, 2012, 60: 770 − 780.

    [15]

    Vairis A, Frost M. On the extrusion stage of linear friction welding of Ti6Al4V[J]. Materials Science and Engineering, 1999, 271: 477 − 484.

    [16]

    Romero J, Attallah M M, Preuss M, et al. Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction weld[J]. Acta Materialia, 2009, 57: 5582 − 5592.

    [17]

    Chamanfar A, Jahazib M, Gholipourb J, et al. Maximizing the integrity of linear friction welded Waspaloy[J]. Materials Science and Engineering A, 2012, 555: 117 − 130.

    [18] 季亚娟, 刘燕冰, 张田仓, 等. TC4/TC17线性摩擦焊接头组织及力学性能[J]. 焊接学报, 2012, 33(10): 109 − 112
    [19]

    Raghavan V. Al-Nb-Ti (aluminum-niobium-titanium)[J]. Journal of Phase Equilibria and Diffusion, 2005, 26(4): 360 − 368.

  • 期刊类型引用(1)

    1. 赵一帆,王莹,刘瑞涛,孟令坤,宋白钰,赵津,王重阳. Stability analysis of CO_2 gas shielded welding short-circuit transition process based on GMAW dynamic model. China Welding. 2023(04): 55-68 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  136
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-12-14

目录

    /

    返回文章
    返回