高级检索

Inconel617合金表面电子束熔覆NbMoCr显微组织和耐腐蚀性的探讨

黄以平, 张国培, 刘海浪, 王波, 蒋健博

黄以平, 张国培, 刘海浪, 王波, 蒋健博. Inconel617合金表面电子束熔覆NbMoCr显微组织和耐腐蚀性的探讨[J]. 焊接学报, 2019, 40(4): 101-106. DOI: 10.12073/j.hjxb.2019400108
引用本文: 黄以平, 张国培, 刘海浪, 王波, 蒋健博. Inconel617合金表面电子束熔覆NbMoCr显微组织和耐腐蚀性的探讨[J]. 焊接学报, 2019, 40(4): 101-106. DOI: 10.12073/j.hjxb.2019400108
HUANG Yiping, ZHANG Guopei, LIU Hailang, WANG Bo, JIANG Jianbo. Investigation on microstructures and corrosion resistance of electron beam cladding NbMoCr on Inconel617[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 101-106. DOI: 10.12073/j.hjxb.2019400108
Citation: HUANG Yiping, ZHANG Guopei, LIU Hailang, WANG Bo, JIANG Jianbo. Investigation on microstructures and corrosion resistance of electron beam cladding NbMoCr on Inconel617[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 101-106. DOI: 10.12073/j.hjxb.2019400108

Inconel617合金表面电子束熔覆NbMoCr显微组织和耐腐蚀性的探讨

基金项目: 

海洋装备用金属材料及其应用国家重点实验室开放基金资助(SKLMEA-K201801);桂林电子科技大学研究生教育创新计划基金资助项目(2017YJCX14)

详细信息
    作者简介:

    黄以平,男,1960年出生,学士,教授. 主要从事高能束装备及工艺研究和教学工作. 已发表论文40余篇. Email: hyp@guet.edu.cn

    通讯作者:

    张国培,男,硕士. Email: 397879329@qq.com

  • 中图分类号: TG 439.3

Investigation on microstructures and corrosion resistance of electron beam cladding NbMoCr on Inconel617

  • 摘要: 为了提高Inconel617合金(简称617合金)材料的表面性能,利用电子束熔覆技术在617合金表面制备了NbMoCr熔覆层. 对它的显微组织、硬度和耐腐蚀性能进行了研究,并与617合金进行了对比. 结果表明,NbMoCr熔覆层的组织更均匀,晶粒更细小,气孔等缺陷更少,且生成了微量M23C6,Cr7C3,Cr4Si4Al13,CoCx等硬质相,提高了熔覆层的表面硬度及耐腐蚀性. 经检测,熔覆层硬度相比617合金硬度高出86 HV10. 电化学腐蚀测试表明,在1 mol/L H2SO4溶液中,617合金自腐蚀电流密度是NbMoCr熔覆层的5.16倍;在3.5 %的NaCl溶液中,617合金自腐蚀电流密度是NbMoCr熔覆层的4.6倍;在1 mol/L NaOH 溶液中,617合金自腐蚀电流密度是NbMoCr熔覆层的3.12倍.
    Abstract: To improve surface properties of Inconel617 alloy (referred to as 617 alloy), NbMoCr cladding layer metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, hardness and corrosion resistance of cladding layer were investigated. Furthermore, it was compared with those of 617 alloy. The results showed that the NbMoCr cladding layer had a more uniform structure, finer grains, fewer defects such as pores, and a small amount of hard phase such as M23C6, Cr7C3, Cr4Si4Al13 and CoCx, which improves the surface hardness and corrosion resistance of the cladding layer, were formed. After the test, the hardness of the coating was 86HV10 higher than that of the 617 alloy. Electrochemical corrosion tests showed that the self-corrosion current density of 617 alloy was 5.16 times as that of NbMoCr cladding layer in 1 mol/L H2SO4 solution. In 3.5% NaCl solution, the self-corrosion current density of 617 alloy was 4.6 times as that NbMoCr cladding layer; In 1 mol/L NaOH solution, the self-corrosion current density of 617 alloy was 3.12 times as that of NbMoCr cladding layer.
  • [1]

    Bai Guanghai, Hu Rui, Li Jinshan, et al. Secondary M23C6 precipitation behavior in Ni-Cr-W based superalloy[J]. Rare Metal Materials and Engineering, 2011, 40(10): 1737 − 1741

    [2]

    Rahman S, Priyadarshan G, Raja K S, et al. Investigation of the secondary phases of alloy 617 by scanning Kelvin probe force microscope[J]. Materials Letters, 2008, 62(15): 2263 − 2266.

    [3] 柏广海, 胡 锐, 李金山, 等. Ni-Cr-W基高温合金二次M23C6析出行为[J]. 稀有金属材料与工程, 2011, 40(10): 1737 − 1741
    [4]

    Guo Yan, Zhou Rongcan, Hou Shufang, et al. Precipitates in INCONEL alloy 617 aged at high temperature[J]. Electric Power, 2012, 45(1): 33 − 36

    [5]

    Ye Hong, Yan Zhonglin, Xue Zhifen. Electron beam cladding Al coating on magnesium alloy[J]. Foundry Technology, 2008, 29(8): 1056 − 1058

    [6] 郭 岩, 周荣灿, 侯淑芳, 等. INCONEL617合金的高温时效析出相[J]. 中国电力, 2012, 45(1): 33 − 36
    [7]

    Bugge J, Kjær S, Blum R. High-efficiency coal-fired power plants development and perspectives[J]. Energy, 2014, 31(10): 1437 − 1445.

    [8]

    Li Deying, Zhang Jian, Zhao Longzhi, et al. Study on Fe-Al-Si composite coating prepared by laser cladding[J]. Hot Working Technology, 2012, 41(24): 162 − 164

    [9]

    Zhang Qingmao, Sun Ning, Liu Ximing, et al. Fundamental investigation on overlapping coating formed by broad-band powder feeding cladding[J]. Heat Treatment of Metals, 2001(2): 25 − 28

    [10] 董 刚. 材料冲蚀行为及机理研究[D]. 杭州:浙江工业大学, 2004.
    [11] 路 程. 激光熔覆Ni基球形WC复合涂层的组织与性能研究[D]. 广州:华南理工大学, 2012.
    [12]

    Zhang Chunhua1, Liu Jie, Wu Chenliang, et al. Microstructue and zinc corrosion mechanism of laser cladding Co-based alloy on 316L stainless steel[J]. Transactions of the China welding Institution, 2015, 36(1): 19 − 22

    [13]

    Zhang Chunhua, Zhang Song, Wen Xiaozhong, et al. Microstructure and performance of a laser cladding of Ni-based alloy on 6061 aluminium alloy[J]. Rare Metal Materials and Engineering, 2005, 34(5): 701 − 704

    [14] 王振坤. 高铬铸钢表面激光熔覆陶瓷相增强Fe基熔覆层的研究[D]. 济南:山东大学, 2014.
    [15]

    Yuan Lin, Gao Yuan, Zhang Wei, et al. Corrosion resistance of nickel-chromizing layer prepared by pulse single power plasma[J]. Corrosion & Protection, 2012, 33(11): 940 − 942

    [16]

    Hao S, Zhao L, He D. Surface microstructure and high temperature corrosion resistance of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam[J]. Nuclear Instruments & Methods in Physics Research, 2013, 312(10): 97 − 103.

    [17]

    Zheng Ying, Wang Chenglei, Zhang Guangyao, et al. Microstructure and corrosion resistance of laser cladding rare earth CeO2+Ni60 alloy coatings on 6061 Al alloy[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 148 − 152.

    [18] 管凤花. 矿用圆环链在井下腐蚀机理及防护的研究[D]. 阜新:辽宁工程技术大学, 2006.
    [19] 叶 宏, 闫忠琳, 薛志芬. 镁合金表面电子束熔覆铝涂层[J]. 铸造技术, 2008, 29(8): 1056 − 1058
    [20] 李德英, 张 坚, 赵龙志, 等. 激光熔覆Fe-Al-Si复合涂层研究[J]. 热加工工艺, 2012, 41(24): 162 − 164
    [21]

    Kruth J P. Material incress manufacturing by rapid prototyping techniques[J]. CIRP Annals-Manufacturing Technology, 1991, 40(2): 603 − 614.

    [22] 李 根. TiC增强钴基合金激光熔覆层组织及性能的研究[D]. 济南:山东大学, 2016.
    [23]

    Qian M, Lim L C, Chen Z D, et al. Parametric studies of laser cladding processes[J]. Journal of Materials Processing Technology, 1997, 63(1–3): 590 − 593.

    [24] 张庆茂, 孙 宁, 刘喜明, 等. 送粉式宽带激光熔覆—搭接基础理论的研究[J]. 金属热处理, 2001(2): 25 − 28
    [25] 谢 亮. 激光熔覆Co基合金熔覆层工艺及其性能研究[D]. 秦皇岛:燕山大学, 2016.
    [26]

    Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping[J]. CIRP Annals-Manufacturing Technology, 1998, 47(2): 525 − 540.

    [27] 张春华, 刘 杰, 吴臣亮, 等. 316L不锈钢表面激光熔覆钴基合金组织及锌蚀机理[J]. 焊接学报, 2015, 36(1): 19 − 22
    [28] 张春华, 张 松, 文効忠, 等. 6061Al合金表面激光熔覆Ni基合金的组织及性能[J]. 稀有金属材料与工程, 2005, 34(5): 701 − 704
    [29] 袁 琳, 高 原, 张 维, 等. 脉冲单电源等离子铬镍共渗层的耐蚀性[J]. 腐蚀与防护, 2012, 33(11): 940 − 942
    [30] 卞松刚. 原位自生Mg_2Si/Mg-Zn-Si复合材料的合金化变质机制及耐蚀性研究[D]. 南京:南京航空航天大学, 2010.
    [31] 郑 英, 王成磊, 张光耀, 等. 6061铝合金表面激光熔覆稀土CeO2+Ni60组织及耐蚀性[J]. 材料热处理学报, 2014, 35(6): 148 − 152
  • 期刊类型引用(2)

    1. 陈妍,付媛媛,汪子妍,潘越. 不同热处理工艺对45钢组织结构和性能的影响. 广州化工. 2024(13): 120-122 . 百度学术
    2. 李新凯,王荣,王启超,董玉健. 扫描电子束微熔抛光临界功率密度规律及实验研究. 表面技术. 2021(07): 386-393 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  138
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-10-19

目录

    /

    返回文章
    返回