CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm
-
摘要: 焊接是汽车车身制造的一个关键环节,焊接质量的好坏严重影响汽车车身质量,所以焊接参数的选择至关重要. 针对薄板焊接质量控制问题,论文利用BP神经网络解决非线性问题的优势,建立焊接变形量与工艺参数之间映射关系模型;结合遗传算法构建基于遗传神经网络焊接的工艺参数优化系统;同时设计正交试验,将该方法与正交试验法相对比. 结果表明,该方法可以有效地实现CMT(cold metal transfer)点焊焊接变形预测与工艺参数优化. 通过预测模型给出合理参数,指导钢薄板和铝合金薄板的CMT点焊变形试验,提高焊接的效率.Abstract: Welding was a key link in automobile body manufacturing. The quality of welding seriously affected the quality of automobile body, so the selection of welding parameters was very important. Aiming at the quality control of thin plate welding, the advantage of BP neural network was used to solve the non-linear problem, and established the mapping model between welding deformation and process parameters. Combining with genetic algorithm, the optimization system of welding process parameters was constructed based on genetic neural network. Then the orthogonal test was designed and compared with the proposed model. The results showed that the method could effectively achieve welding deformation prediction and optimization of process parameter on CMT (cold metal transfer) spot. The reasonable parameters were given by the prediction model to guide the CMT spot welding deformation test of steel sheet and aluminium alloy sheet, and to improve the welding efficiency.
-
Keywords:
- neural network /
- genetic algorithm /
- spot welding /
- parameter optimization
-
-
[1] Cheng Fangjie, Li Huijuan, Lian Jinrui, et al. Influence of variation of welding parameters on spot welding quality[J]. Automobile Technology, 2005(4): 35 − 37
[2] Rodriguez N, Vazquez L, Huarte L, et al. Wire and arc additive manufacturing: a comparison between CMT and top TIG processes applied to stainless steel[J]. Welding in the World, 2018, 62(5): 1083 − 1096.
[3] Peng Jinning, Chen Bingsen, Zhu Ping. Intelligent design of welding procedure parameters based on neural networks[J]. Transactions of the China Welding Institution, 1998, 19(1): 19 − 23
[4] 崔晴晴. 铝合金和镀锌钢的CMT焊接技术研究[D]. 江苏: 江苏科技大学, 2012. [5] Zhang Pengxian, Li Hao, Zhang Jie. A GABP optimized algorithm for filler rate of non-heated wire[J]. Transactions of the China Welding Institution, 2012, 33(12): 77 − 80
[6] 程方杰, 李慧娟, 廉金瑞, 等. 焊接参数变化对点焊质量的影响[J]. 汽车技术, 2005(4): 35 − 37 [7] Zhang Yubao, Gou Jianjun, Zhang Enhui, et al. Welding deformation prediction of SMAW based on improved genetic neural network[J]. Hot Working Technology, 2015, 44(1): 208 − 210
[8] 彭金宁, 陈炳森, 朱 平. 焊接工艺参数的神经网络智能设计[J]. 焊接学报, 1998, 19(1): 19 − 23 [9] 张鹏贤, 李 浩, 张 杰. 一种冷丝填充速度的GABP优化算法[J]. 焊接学报, 2012, 33(12): 77 − 80 [10] Chen Daliang, Li Hongliang, Gu Cansong, et al. The effect of subframe system boundary constraints on accuracy of computational modal analysis[J]. Automobile Technology, 2016(4): 27 − 30
[11] 张玉宝, 苟建军, 张恩慧, 等. 基于改进遗传神经网络的SMAW焊接变形预测[J]. 热加工工艺, 2015, 44(1): 208 − 210 [12] Nie Y P, Zhang P L, Wu X, et al. Rapid prototyping of 4043 Al-alloy parts by cold metal transfer[J]. Science and Technology Welding and Joining, 2018, 23(6): 527 − 535.
[13] 陈达亮, 李洪亮, 顾灿松, 等. 副车架系统边界约束对计算模态分析精度的影响研究[J]. 汽车技术, 2016(4): 27 − 30 [14] 林惠乐. 基于遗传神经网络的CO2弧焊机器人工艺参数优化研究[D]. 广西: 广西大学, 2015. [15] Lin W Y, Ren X Y, Zhou T T, et al. A novel robust algorithm for position and orientation detection based on cascaded deep neural network[J]. Neurocomputing, 2018, 308: 138 − 146.
-
期刊类型引用(3)
1. 常留红,郭洋,郑景琦,李飘,薛雄. 规则波作用下混凝土-环氧涂层界面气泡初始损伤演化. 中国海洋大学学报(自然科学版). 2025(02): 138-148 . 百度学术
2. 马玉娥,杨萌,孙文博. 基于近场动力学理论的热障涂层热冲击开裂行为. 航空学报. 2022(06): 238-247 . 百度学术
3. 李佐君,梁伟,钟舜聪,戴晨煜. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析. 失效分析与预防. 2021(05): 300-308+313 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 119
- HTML全文浏览量: 5
- PDF下载量: 7
- 被引次数: 8