Study on nonlinear time series model of vibration welding process of aluminum alloy
-
摘要: 针对7系列超硬铝在传统熔焊过程中易出现热裂纹、气孔和焊接接头软化等问题,研究振动焊接工艺过程中,焊接工艺参数变化与焊接接头强度间的非线性关系机理,建立基于焊接过程工艺参数测量数据的7075超硬铝振动焊接接头强度非线性时间序列预测模型. 文中在7075超硬铝振动焊接过程参数测量数据的基础上,建立了焊接过程参数时间序列,并在此基础上研究建立了焊接过程系统相空间重构参数及确定性检验方法. 根据重构相空间的相点演化轨迹与焊接接头强度参数间的非线性关系,建立相空间相点演化轨迹的人工神经网络拟合模型,对焊接接头的断后伸长率、抗拉强度、硬度、焊缝余高、晶枝最大粗度、晶粒数量等物理参数进行计算. 根据建立的模型进行的一系列焊接接头强度试验显示. 结果表明,该模型的预测结果可以满足工程需要,具有工程实用价值.Abstract: To solve the problems of hot cracks, pores and softening of welded joints in the traditional welding process of 7 series super hard aluminum, the mechanism of nonlinear relationship between welding process parameters and the strength of welded joints during vibration welding process is studied in the paper. The nonlinear time series prediction model of 7075 super hard aluminum vibration welded joints with process parameter measurement data. Used the parameter measurement data of 7075 super hard aluminum vibration welding process, the time series of welding process parameters is established, and the phase space reconstruction parameters and deterministic test methods of the welding process system are established based on time series. The artificial neural network model of the phase space phase point evolution trajectory is established in the basis of the nonlinear relationship between the phase evolution trajectory of the reconstructed phase space and the strength parameters of the welded joint. The model is used to calculate the physical parameters such as the elongation after fracture, tensile strength, hardness, weld reinforcement, maximum coarseness of the crystal, and the number of crystal grains. A series of welded joint strength tests for the established model show that the prediction results of this model can meet the engineering practical value.
-
-
[1] Yu Xiuping, Sun Hua, Zhao Xiren, et al. Weld wild prediction based on artofocal neural network[J]. Transactions of the China Welding Institution, 2005, 26(5): 17 − 19, 45
[2] Kumar P V, Reddy G M, Rao K S. Microinstruction, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir weld-effect of post weld heat treatment[J]. Defence Technology, 2015, 11(4): 362 − 369.
[3] Yao Ping, Xue Jiaxiang, Meng Wanjun, et al. Influence of processing parameters on weld forming in double-pulsed MIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2009, 20(3): 69 − 72
[4] 赵海洋. 铝合金搅拌摩擦焊焊接接头组织及疲劳断裂行为研究[D]. 天津: 天津大学, 2010. [5] Tong Jianhua, Zhang Kun, Lin Song, et al. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 105 − 108
[6] 刘长军. 双脉冲MIG焊7075超硬铝合金焊接接头组织与性能的研究[D]. 沈阳: 沈阳工业大学, 2017. [7] 于秀萍, 孙 华, 赵希人, 等. 基于人工神经网络的焊缝宽度预测[J]. 焊接学报, 2005, 26(5): 17 − 19 , 45
[8] Xia Weisheng, Zhang Haiou, Wang Guilan, et al. Intelligent process modeling of robotic plasma spraying based on multi-layer artificial neural network[J]. Transactions of the China Welding Institution, 2009, 30(7): 41 − 44.
[9] 姚 萍, 薛家祥, 蒙万君, 等. 工艺参数对铝合金双脉冲MIG焊焊缝成形的影响[J]. 焊接学报, 2009, 20(3): 69 − 72 [10] Yi J, Cao S F, Li L X, et al. Effect of welding current on morphology and micro-structure of Al alloy T-joint in double-pulsed MIG welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3204 − 3211.
[11] 佟建华, 张 坤, 林 松, 等. 搅拌摩擦焊和熔化极气体保护焊6082 铝合金疲劳性能分析[J]. 焊接学报, 2015, 36(7): 105 − 108 [12] 夏卫生, 张海鸥, 王桂兰, 等. 基于多层ANN的机器人等离子熔射智能化模型[J]. 焊接学报, 2009, 30(7): 41 − 44
计量
- 文章访问数: 158
- HTML全文浏览量: 1
- PDF下载量: 8