Analysis of influence mechanism of external transverse magnetic field on welding pool of 304 stainless steel
-
摘要: 为了改善焊缝成形及提高焊接零件组织和性能,文中采用有限元法对外加磁场作用下的304不锈钢焊接熔池进行电磁场和热流场之间的耦合分析,得到了有无外加横向磁场作用下熔池内液态金属流动的速度矢量分布. 结果表明,外加磁场使熔池横截面最大流速分布由单一的熔池中心中部改为熔池中心上表面略靠下和熔池底部;熔池纵截面最大流速由首尾端漩涡交汇处改为沿两个漩涡流动方向较均匀分布,这是由于电磁压力抵消了部分表面张力,使表面张力的作用位置更靠近熔池中心位置. 在304不锈钢上进行堆焊试验,焊道横截面组织形貌证实了上述模拟结果.Abstract: In order to improve the weld forming and the performance of welded parts, the coupling analysis between electromagnetic field and thermal flow field of 304 stainless steel weld pool under external magnetic field is carried out by finite element method in this paper, and the velocity vector distribution of liquid metal flow in weld pool under magnetic field and without magnetic field is obtained. The results show that the maximum velocity distribution in the cross section of the molten pool is changed from a single central part to a slightly lower upper surface and the bottom of the molten pool, and the maximum velocity distribution on longitudinal section is not only located at the vortex junction of the front molten pool and the tail molten pool but along two vortex flow direction more uniformly distributed. This is because the electromagnetic pressure offset part of the effect of surface tension, and the electromagnetic pressure makes the acting position of the surface tension is more close to the center of the molten pool and away from the edge of workpiece. The building-up welding test on 304 stainless steel is carried out, and the phase diagram of cross section of the welding confirms the above simulation results.
-
-
[1] 耿海滨, 熊江涛, 黄 丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11): 17 − 21 [2] Geng Haibin, Xiong Jiangtao, Huang Dan, et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding & Joining, 2015(11): 17 − 21
[3] 武传松, 王 林, 陈 姬, 等. 高速GMAW驼峰焊道的产生机理与抑制技术[J]. 焊接, 2016(7): 4 − 13, 69 [4] Wu Chuansong, Wang Lin, Chen Ji, et al. Occurrence mechanism and suppression technology of humping bead in high-speed GMAW[J]. Welding & Joining, 2016(7): 4 − 13, 69
[5] 刘秋晓, 王发展, 张 院, 等. Cu-Cr二元合金宏观偏析与温度场的数值模拟[J]. 材料科学与工艺, 2016(6): 73 − 78 [6] Liu Qiuxiao, Wang Fazhan, Zhang Yuan, et al. Numerical simulation of macrosegregation and temperature field of Cu-Cr two binary alloy[J]. Materials Science and Technology, 2016(6): 73 − 78
[7] Bachmann M, Avilov V, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309 − 321.
[8] Chang Yunlong, Lu Lin, Li Yingmin, et al. Mechanism of weld formation during high speed TIG welding with external magnetic fields[J]. Transactions of the China Welding Institution, 2013, 34(6): 1 − 4
[9] Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578 − 591.
[10] Bai Xingwang, Zhang Haiou, Zhou Xiangman, et al. Electromagneto-fluid coupling simulation of arc rapid prototyping process with external high-frequency magnetic field[J]. Chinese Journal of Mechanical Engineering, 2016(4): 60 − 66, 72
[11] 常云龙, 路 林, 李英民, 等. 磁控TIG高速焊焊缝成形机理[J]. 焊接学报, 2013, 34(6): 1 − 4 [12] Zhang Tao, Wu Chuansong. Numerical simulation of temperature field and fluid flow in keyhole plasma arc welding[J]. Transactions of the China Welding Institution, 2011, 32(7): 87 − 90
[13] Marlon Hahn, Christian Weddeling, Joern Lueg-Althoff, et al. Analytical approach for magnetic pulse welding of sheet connections[J]. Journal of Materials Processing Technology, 2016, 230: 131 − 142.
[14] Liu Zhengjun, Wang Xiaohui, Su Yunhai. Effect of magnetic field on shape of magnesium alloy weld pool[J]. Transactions of the China Welding Institution, 2016, 37(1): 103 − 106
[15] 柏兴旺, 张海鸥, 周祥曼, 等. 外加高频磁场下电弧快速成形过程的电磁-流体耦合数值模拟[J]. 机械工程学报, 2016(4): 60 − 66, 72 [16] Chen Rong, Wang Chunming, Jiang Ping, et al. Effect of axial magnetic field in the laser beam welding of stainless steel to aluminum alloy[J]. Materials & Design, 2016, 109(5): 146 − 152.
[17] 张 涛, 武传松. 穿孔等离子弧焊接热场和流场的数值模拟[J]. 焊接学报, 2011, 32(7): 87 − 90 [18] 刘政军, 王晓慧, 苏允海. 外加磁场对镁合金焊接熔池形态的影响[J]. 焊接学报, 2016, 37(1): 103 − 106 [19] Suman Patra, Kanwer Singh Arora, Mahadev Shome, et al. Interface characteristics and performance of magnetic pulse welded copper-Steel tubes[J]. Journal of Materials Processing Technology, 2017, 245: 278 − 286.
计量
- 文章访问数: 174
- HTML全文浏览量: 4
- PDF下载量: 11