高级检索

基于动态时空规整的系泊链闪光焊接在线质量评估

李俏, 苏世杰, 陈赟, 王海荣, 唐文献

李俏, 苏世杰, 陈赟, 王海荣, 唐文献. 基于动态时空规整的系泊链闪光焊接在线质量评估[J]. 焊接学报, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071
引用本文: 李俏, 苏世杰, 陈赟, 王海荣, 唐文献. 基于动态时空规整的系泊链闪光焊接在线质量评估[J]. 焊接学报, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071
LI Qiao, SU Shijie, CHEN Yun, WANG Hairong, TANG Wenxian. On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071
Citation: LI Qiao, SU Shijie, CHEN Yun, WANG Hairong, TANG Wenxian. On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071

基于动态时空规整的系泊链闪光焊接在线质量评估

基金项目: 

国家自然科学基金青年科学基金(51705214);江苏省自然科学基金青年基金(BK20170582);浙江省质监系统质量技术基础建设项目(NQI);船舶与海工装备安全性能评价关键技术研究(20180129)

详细信息
    作者简介:

    李 俏,女,1994年出生. 硕士. 主要从事焊接质量控制方向的研究. Email:qiaoli_just@foxmail.com

    通讯作者:

    苏世杰,男,博士研究生,副教授. Email:sushijie@just.edu.cn

  • 中图分类号: TG 441.7

On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping

  • 摘要: 闪光焊接系泊链已经成为现阶段造船业高质量系泊链市场的主流. 针对闪光焊接在线质量评估问题,首先采集实际焊接过程中各种传感器信号;其次,提出了一种新颖的时空规整算法来量化闪光焊接过程中电流和电极位置信号的时空不相似度;然后,将得到的不相似距离矩阵嵌入到低维空间的特征向量中,并保留信号之间的原始不相似距离;最后,提出了KNN分类算法并引入K折交叉验证,对嵌入的特征向量(低维空间中的坐标)进行分类. 结果表明,文中提出的方法不仅能够用采集的传感器信号进行实时的焊接质量评估,而且有效地揭示了闪光焊接过程的质量差异.
    Abstract: The flash welding mooring chain has become the mainstream of the high-quality mooring chain market in the shipbuilding industry. In this present work, we proposed a new methodology for the online quality assessment of flash welding. First, the various sensor signals in the real-world welding process are collected in this work. Second, a novel spatiotemporal warping algorithm is proposed to quantify the spatiotemporal dissimilarity of current and electrode position signals during flash welding processes. Third, the dissimilar distance matrix is embedded into the feature vector of the low dimensional space while the original dissimilar distance between the signals were preserved. Finally, the KNN classification algorithm and K-fold cross-validation are proposed to classify the embedded feature vectors (coordinates in low-dimensional space). Experimental results show that the proposed method in this paper can not only use the collected sensor signals for real-time welding quality assessment, but also effectively reveal the difference between the flash welding processes.
  • [1]

    Feng Qiuyuan, Li Tingju, Ding Zhimin, et al. Research situation and development trends of flash butt welding[J]. Materials Science & Technology, 2008(1): 49 − 53

    [2] 冯秋元, 李廷举, 丁志敏, 等. 闪光对焊技术研究现状及发展趋势[J]. 材料科学与工艺, 2008(1): 49 − 53
    [3] 陈 建. 钢轨闪光焊接头质量检测与预测[D]. 西南交通大学, 2010.
    [4]

    Zeng Fenfang, Yu Pingliang, Chen Hongwei, et al. Computer parameter test system for flash welding of anchor chain[J]. Shipbuilding Technology, 1995(8): 42 − 44, 47

    [5]

    Chvertko Y, Shevchenko M, Pirumov A. Monitoring of the process of flash-butt welding[J]. Soldagem & Inspeção, 2013, 18(1): 31 − 38.

    [6]

    Su Shijie, Gao Lili, Wang Xinyan. Control system for anchor chain flash butt welder based on industrial PC[J]. Transactions of the China Welding Institution, 2011, 32(11): 96 − 99

    [7] 曾芬芳, 虞平良, 陈红卫, 等. 锚链闪光焊计算机参数测试系统[J]. 造船技术, 1995(8): 42 − 44, 47
    [8]

    Wang Zhiping, Wang Kezheng, He Fangdian. Technological experiment of 500 kW preheating flash butt welding[J]. Transactions of the China Welding Institution, 2000, 21(4): 76 − 79, 101

    [9] 苏世杰, 郜利利, 王新彦. 基于工控机的锚链闪光焊机控制系统设计与开发[J]. 焊接学报, 2011, 32(11): 96 − 99
    [10]

    Zhang Zhuying, Huang Yulong, Wang Hanhu. A new KNN classification approach[J]. Computer Science, 2008, 35(3): 170 − 172.

    [11] 王治平, 王克争, 何方殿. 500 kW预热闪光焊工艺试验[J]. 焊接学报, 2000, 21(4): 76 − 79

    , 101

    [12]

    Jeong Y S, Jeong M K, Omitaomu O A. Weighted dynamic time warping for time series classification[J]. Pattern Recognition, 2011, 44(9): 2231 − 2240.

    [13]

    Myers C S, Rabiner L R, Rosenberg A E. Performance trade‐offs in dynamic time warping algorithms for isolated word recognition[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1980, 28(6): 623 − 635.

    [14]

    Tormene P, Quaglini G S, Stefanelli M. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation[J]. Artificial Intelligence in Medicine, 2009, 45(1): 11 − 34.

    [15]

    Yang H, Kan C, Liu G, et al. Spatiotemporal differentiation of myocardial infarctions[J]. IEEE Transactions on Automation Science & Engineering, 2013, 10(4): 938 − 947.

    [16]

    Chen K, Hui Y. Internet of hearts-large-scale stochastic network modeling and analysis of cardiac electrical signals[M]. Stochastic Modeling and Analytics in Healthcare Delivery Systems, 2017.

    [17] 张著英, 黄玉龙, 王翰虎. 一个高效的KNN分类算法[J]. 计算机科学, 2008, 35(3): 170 − 172
计量
  • 文章访问数:  147
  • HTML全文浏览量:  3
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-24

目录

    /

    返回文章
    返回