高级检索

能量输入对微区熔凝铜钢双金属组织和性能的影响

李震, 齐亚航, 高鹏, 周铁涛

李震, 齐亚航, 高鹏, 周铁涛. 能量输入对微区熔凝铜钢双金属组织和性能的影响[J]. 焊接学报, 2019, 40(2): 149-153. DOI: 10.12073/j.hjxb.2019400059
引用本文: 李震, 齐亚航, 高鹏, 周铁涛. 能量输入对微区熔凝铜钢双金属组织和性能的影响[J]. 焊接学报, 2019, 40(2): 149-153. DOI: 10.12073/j.hjxb.2019400059
LI Zhen, QI Yahang, GAO Peng, ZHOU Tietao. Effects of heat input on microstructure and mechanical properties of copper/steel bimetal by microzone melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 149-153. DOI: 10.12073/j.hjxb.2019400059
Citation: LI Zhen, QI Yahang, GAO Peng, ZHOU Tietao. Effects of heat input on microstructure and mechanical properties of copper/steel bimetal by microzone melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 149-153. DOI: 10.12073/j.hjxb.2019400059

能量输入对微区熔凝铜钢双金属组织和性能的影响

详细信息
    作者简介:

    李 震,男,1993年出生,硕士研究生. 从事铜钢双金属材料微区熔覆及其数值模拟. Email: zy1601205@buaa.edu.cn

    通讯作者:

    周铁涛,男,教授. Email:04380@buaa.edu.cn

  • 中图分类号: TG 457.13

Effects of heat input on microstructure and mechanical properties of copper/steel bimetal by microzone melting

  • 摘要: 采用微区熔凝在钢基板上熔覆锡青铜得到了铜钢双金属材料. 应用ANSYS软件研究了微区熔凝过程的基体温度变化和试样不同区域冷却速度变化. 应用光学显微镜(OM)、X射线衍射仪(XRD)、电子探针(EPMA)及显微硬度计等手段研究了试样不同区域锡青铜层的组织和性能差异. 结果表明,随着熔覆过程进行,基体温度由20 ℃升高到433 ℃,熔池冷却速度由2 070 K/s降低到336 K/s,堆焊层硬度由199 HV降低到137 HV,微区熔凝得到的锡青铜层开始时主要由αCu,Pb和αFe组成,结束时由αCu,Pb元素和分布在树枝晶间的富Sn相的δCu相构成;随着堆焊过程进行,αCu晶粒尺寸由外向里由11.2 μm增大到53.4 μm.
    Abstract: Copper/steel bimetal materials were obtained with cladding tin bronze on steel substrates by microzone melting. The changing of steels substrate temperature and microzone cooling velocity were simulated by ANSYS. Microstructure and mechanical properties of different region were investigated by optical microscopy(OM), X-ray diffraction(XRD), electron probe microanalysis(EPMA) and micro hardness tester. The results show that as the surfacing process went on, the temperature of the steels substrate increased obviously from 20 °C to 433 °C. The cooling speed decreased from 2 070 K/s to 336 K/s and the hardness of the surfacing layer decreased from 199 HV to 137 HV. The initial peripheral Tin-Bronze coating consisted of αCu, Pb and αFe, which were the product of the Cu-Fe liquid phase separation having a characteristic of metastable liquid phase separation. The grain size of αCu increased from 11.2 μm to 53.4 μm.
  • [1]

    Gao Huhe, Ding Tingting, Ma Shujin, et al. Microstructure and wear resistance of VC/Tin-Bronze coating deposited by plasma transferred arc surfacing[J]. Chinese Journal of Rare Metals, 2017, 41(1): 45 − 51

    [2]

    Mabille I, Bertrand A, Sutter E M M, et al. Mechanism of dissolution of a Cu–13Sn alloy in low aggressive conditions[J]. Corrosion Science, 2003, 45(5): 855 − 866.

    [3]

    Gong Jianming, Jiang Wenchun, Tang Jianqun, et al. Numerical simulation of hydrogen diffusion in low alloy steel welded joint under wet H2S environment[J]. Transactions of the China Welding Institution, 2007, 28(4): 5 − 9

    [4] 高胡鹤, 丁婷婷, 马淑谨, 等. 等离子堆焊VC/锡青铜涂层的组织结构与耐磨性能研究[J]. 稀有金属, 2017, 41(1): 45 − 51
    [5] 吴圣川. 复杂件等离子熔积成形过程有限元及无网格法模拟[D]. 武汉: 华中科技大学, 2009.
    [6]

    Wang Mingjie, Zhang Guowei, Liu Shaojie. Effects of trace elements on microstructure and properties of lead-tin bronze[J]. Hot Working Technology, 2016, 45(5): 87 − 89

    [7] 任颂赞, 叶 俭, 陈德华. 金相分析原理及技术[M]. 上海: 上海科学技术文献出版社, 2013.
    [8]

    Duan Aiqin, Gong Shuili, Liu Fei. Influence of welding parameters on temperature field characteristics during laser welding of 5A90 by infrared thermograph[J]. Transactions of the China Welding Institution, 2017, 38(11): 97 − 102.

    [9]

    Chen Y Z, Liu F, Yang G C, et al. Rapid solidification of bulk undercooled hypoperitectic Fe–Cu alloy[J]. Journal of Alloys & Compounds, 2007, 427(1): 1 − 2.

    [10]

    Wang C P, Liu X J, Ohnuma I, et al. Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems[J]. Journal of Phase Equilibria & Diffusion, 2004, 25(4): 320 − 328.

    [11] 巩建鸣, 蒋文春, 唐建群, 等. 湿H2S环境下低合金钢焊接接头氢扩散数值模拟[J]. 焊接学报, 2007, 28(4): 5 − 9
    [12]

    Saunders N, Miodownik A P. The Cu-Sn (Copper-Tin) system[J]. Bulletin of Alloy Phase Diagrams, 1990, 11(3): 278 − 287.

    [13]

    Tavakoli A, Liu R, Wu X J. Improved mechanical and tribological properties of tin–bronze journal bearing materials with newly developed tribaloy alloy additive[J]. Materials Science & Engineering A, 2008, 489(1): 389 − 402.

    [14]

    Battezzati L, Curiotto S, Johnson E, et al. Undercooling and demixing in rapidly solidified Cu–Co alloys[J]. Materials Science & Engineering A, 2007, 449(13): 7 − 11.

    [15] 刘舒婕. 热扩散对高铝青铜涂(熔)敷层组织及摩擦性能的影响[D]. 兰州: 兰州理工大学, 2016.
    [16]

    Ünlü B S, Atik E. Evaluation of effect of alloy elements in copper based CuSn10 and CuZn30 bearings on tribological and mechanical properties[J]. Journal of Alloys & Compounds, 2010, 489(1): 262 − 268.

    [17] 王明杰, 张国伟, 刘少杰. 微量元素对铅锡青铜组织与性能的影响[J]. 热加工工艺, 2016, 45(5): 87 − 89
    [18]

    Liu H H, Chen H J, Liu W J. Numerical analysis of flow-thermal coupling in micro-plasma welding pool of thin-wall part[J]. China Welding, 2018, 27(2): 13 − 18.

    [19] 段爱琴, 巩水利, 刘 飞. 激光焊接工艺参数对5A90红外温度场特征的影响[J]. 焊接学报, 2017, 38(11): 97 − 102
计量
  • 文章访问数:  151
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02

目录

    /

    返回文章
    返回