高级检索

硅-玻璃-硅阳极键合机理及力学性能

Mechanism and mechanical property of Si-glass-Si anodic bonding process

  • 摘要: 采用两步法阳极键合技术成功实现了硅-玻璃-硅的连接. 两次键合过程中,电流特征有明显差异,第一次键合电流先迅速增大到峰值电流,然后迅速衰减至一较小值. 受先形成Na+离子耗尽层的影响,第二次键合电流从峰值电流衰减的过程中,出现二次增大然后衰减的现象. 利用扫描电镜对键合界面进行观察,结果表明玻璃两侧界面均键合良好,玻璃表面可观察到大量析出物. 利用万能材料试验机对键合强度进行测试,结果表明,界面强度随着键合电压的升高而增大. 断裂主要发生在玻璃基体内部靠近第二次键合界面一侧.

     

    Abstract: Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value. But for the second bonding step, there were two current peaks, the current varified as decrease-increase-decreased rule. SEM was conducted to investigate the interfacial structure of the Si-glass-Si samples. Tensile tests indicated that the fracture occurred at the glass substrate and bonding strength increased with the increment of the bonding voltage.

     

/

返回文章
返回