Mechanism and mechanical property of Si-glass-Si anodic bonding process
-
摘要: 采用两步法阳极键合技术成功实现了硅-玻璃-硅的连接. 两次键合过程中,电流特征有明显差异,第一次键合电流先迅速增大到峰值电流,然后迅速衰减至一较小值. 受先形成Na+离子耗尽层的影响,第二次键合电流从峰值电流衰减的过程中,出现二次增大然后衰减的现象. 利用扫描电镜对键合界面进行观察,结果表明玻璃两侧界面均键合良好,玻璃表面可观察到大量析出物. 利用万能材料试验机对键合强度进行测试,结果表明,界面强度随着键合电压的升高而增大. 断裂主要发生在玻璃基体内部靠近第二次键合界面一侧.Abstract: Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value. But for the second bonding step, there were two current peaks, the current varified as decrease-increase-decreased rule. SEM was conducted to investigate the interfacial structure of the Si-glass-Si samples. Tensile tests indicated that the fracture occurred at the glass substrate and bonding strength increased with the increment of the bonding voltage.
-
Keywords:
- anodic bonding /
- Si-glass-Si /
- electronic packaging /
- bonding strength
-
-
[1] Wallis G, Pomerantz I. Field assisted glass-metal sealing[J]. Journal of Applied Physics, 1969, 40(10): 3946 − 3949.
[2] Liu Cuirong, Meng Qingsen, Hu Lifang, et al. Microstructure and bonding mechanism of anodic bonded interface between Pyrex glass and Kovar alloy[J]. Transactions of the China Welding Institution, 2008, 29(2): 73 − 76
[3] Yin Xu, Liu Cuirong, Du Chao, et al. Solid electrolyte and anodic properties of the polymer Al[J]. Transactions of the China Welding Institution, 2015, 136(11): 37 − 40
[4] Xiong D, Cheng J, Li H, et al. Anodic bonding of glass–ceramics to stainless steel coated with intermediate SiO2 layer[J]. Microelectronic Engineering, 2010, 87(9): 1741 − 1746.
[5] Qin Huifeng, Meng Qingsen. Mechanism analysis of anodic bonding between glass/aluminum/glass layer[J]. Ordnance Material Science and Engineering, 2012, 35(1): 32 − 34
[6] Joyce R, Singh K, Varghese S, et al. Stress reduction in silicon/oxidized silicon–Pyrex glass anodic bonding for MEMS device packaging: RF switches and pressure sensors[J]. Journal of Materials Science Materials in Electronics, 2014, 26(1): 411 − 423.
[7] Hsu Y W, Chen J Y, Chien H T, et al. New capacitive low-g triaxial accelerometer with low cross-axis sensitivity[J]. Journal of Micromechanics & Microengineering, 2010, 20(5): 477 − 480.
[8] Gopal R. Fabrication of MEMS xylophone magnetometer by anodic bonding technique using SOI wafer[J]. Springer-Verlag, 2017, 23(1): 81 − 90.
[9] 刘翠荣, 孟庆森, 胡立方, 等. Pyrex玻璃与Kovar合金阳极键合界面微观结构及其形成机制[J]. 焊接学报, 2008, 29(2): 73 − 76 [10] Yang C R, Wu J W, Chang L Y. Design and implementation of a novel conical electrode for fast anodic bonding[J]. Journal of Micromechanics & Microengineering, 2014, 24(10): 105003.
[11] Tang J, Cai C, Ming X, et al. Morphology and stress at silicon-glass interface in anodic bonding[J]. Applied Surface Science, 2016, 387: 139 − 148.
[12] 阴 旭, 刘翠荣, 杜 超, 等. 无机填料对高分子固体电解质与金属铝键合性能的影响[J]. 焊接学报, 2015, 136(11): 37 − 40 [13] Daschner R, Baur H, Pfau T. Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs[J]. Applied Physics Letters, 2014, 105(4): 041107 − 041107–4.
[14] 秦会峰, 孟庆森. 玻璃/铝/玻璃三层结构阳极键合机理分析[J]. 兵器材料科学与工程, 2012, 35(1): 32 − 34 [15] 陆春意. 基于电流控制的阳极键合工艺方法及实验研究[D]. 苏州: 苏州大学, 2015. [16] Albaugh K B, Rasmussen D H. Rate processes during anodic bonding[J]. Journal of the American Ceramic Society, 1992, 75(75): 2644 − 2648.
-
期刊类型引用(25)
1. Zhihai Dong,Ye Tian,Long Zhang,Tong Jiang,Dafeng Wang,Yunlong Chang,Donggao Chen. Research status of high efficiency deep penetration welding of medium-thick plate titanium alloy: A review. Defence Technology. 2025(03): 178-202 . 必应学术
2. 张世伟,王珏,佀好学,刘颖,张博贤. TC4钛合金激光自熔焊焊接组织及性能. 焊接. 2024(06): 33-39+46 . 百度学术
3. 虞文军,张成竹,张骞,王东晔,朱振新. 峰值温度和降温速率对TC4钛合金焊接热影响区组织与性能的影响. 精密成形工程. 2024(06): 70-76 . 百度学术
4. 龙伟民,井培尧,秦建. 极端条件下焊接技术的研究进展. 电焊机. 2023(04): 1-13 . 百度学术
5. 杜勇,李峰,夏希玮,武鹏博,孙徕博,方乃文. TC4钛合金窄间隙激光填绞股焊丝焊接接头组织及性能. 机械制造文摘(焊接分册). 2023(02): 26-30 . 百度学术
6. 李康宁,徐良,杨海锋,崔辉,谷世伟,郑红彬. 复合传感技术在激光焊接过程质量监测中的应用. 机械制造文摘(焊接分册). 2023(02): 19-25 . 百度学术
7. 周俊,陈灿阳,张晶,龙雨. 近红外光和蓝光激光焊接Ti/Cu异种金属工艺研究. 稀有金属. 2023(05): 738-747 . 百度学术
8. 刘自刚,代锋先,陆刚,张航,沈志永. 钛合金激光焊研究现状与展望. 材料导报. 2023(S1): 354-359 . 百度学术
9. 付超,芦丽莉,袁军,叶义海,黄卫东. SLM和SLM+HT成形TA17合金的微观组织与变体选择特征. 焊接学报. 2023(07): 109-115+135 . 本站查看
10. 王东坡,张子璇,高文斌,邓彩艳,梁行,王婷. TC4钛合金EBW和TIG焊接头断裂韧性对比分析. 焊接学报. 2023(08): 7-13+129 . 本站查看
11. 巩鹏飞,李亚,柴斐,陈洪胜,高会良,王文先. TC4钛合金真空电子束焊温度场及成形性能. 焊接技术. 2023(08): 35-41+130 . 百度学术
12. 黄瑞生,李想,邹吉鹏,武鹏博,滕彬,苏金花,孙元奇. Ti6Al4V合金低真空激光焊接头形貌特征分析. 焊接学报. 2023(09): 24-29+130 . 本站查看
13. 聂璞林,李铸国. 钛合金激光焊接研究现状. 民用飞机设计与研究. 2022(01): 95-103 . 百度学术
14. 黄瑞生,方乃文,武鹏博,徐锴,秦建,赵德民,曾才有,周坤. 厚壁钛合金熔化焊接技术研究现状. 电焊机. 2022(06): 10-24 . 百度学术
15. 陈兵,彭春涛,向红明. 矿用中部槽焊接变形控制工艺研究. 价值工程. 2022(23): 142-144 . 百度学术
16. 李康宁,徐良,杨海锋,崔辉,谷世伟,郑红彬. 复合传感技术在激光焊接过程质量监测中的应用. 焊接. 2022(05): 36-42 . 百度学术
17. 肖珺,雷一鼎,陈树君,芦苇,何恩光. 基于多点柔性支撑的钛合金激光焊接变形控制. 焊接学报. 2022(08): 8-12+113 . 本站查看
18. 苗玉刚,王清龙,李春旺,吴一凡,赵羽扬,孙宏伟. 中厚板钛合金激光-CMT复合焊接工艺特性分析. 焊接学报. 2022(08): 42-47+115-116 . 本站查看
19. 张铭洋,蒋熠鸣,王春明,欧阳求保,米高阳. 后热处理对激光焊接7075铝合金显微组织与力学性能影响. 焊接学报. 2022(08): 13-18+113-114 . 本站查看
20. 邹吉鹏,陈健,黄瑞生,武鹏博,滕彬,曹浩. 厚板Ti6Al4V合金低真空激光焊接接头组织及力学性能. 焊接学报. 2022(08): 54-60+116-117 . 本站查看
21. 张国滨,姜梦,陈曦,陈奥,雷正龙,陈彦宾. 常压/真空环境激光焊接焊缝成形特性及残余应力与变形对比. 焊接学报. 2022(08): 34-41+115 . 本站查看
22. 孔斌,杜心伟,海沁雨,陈纪城,刘仁培,魏艳红. Ti6Al4V薄板脉冲激光拼焊焊缝成形及力学性能. 焊接. 2022(09): 10-16 . 百度学术
23. 孔斌,杜心伟,海沁雨,陈纪城,刘仁培,魏艳红. Ti6Al4V薄板脉冲激光拼焊的焊缝成形及力学性能. 机械制造文摘(焊接分册). 2022(05): 1-7 . 百度学术
24. 杜勇,李峰,夏希玮,武鹏博,孙徕博,方乃文. TC4钛合金窄间隙激光填绞股焊丝焊接接头组织及性能. 焊接. 2022(12): 1-5 . 百度学术
25. 张可召,蔡嘉梦,刘栋,陈锦伊,包晔峰,牛红志. 送丝速度对Ti-3Al-6Mo-2Fe-2Zr钛合金激光填丝焊接头组织与性能的影响. 焊接学报. 2022(12): 35-40+115 . 本站查看
其他类型引用(7)
计量
- 文章访问数: 255
- HTML全文浏览量: 7
- PDF下载量: 26
- 被引次数: 32