高级检索

45钢电子束扫描表面W合金化组织和硬度

魏德强, 任旭隆, 王荣, 吕少鹏

魏德强, 任旭隆, 王荣, 吕少鹏. 45钢电子束扫描表面W合金化组织和硬度[J]. 焊接学报, 2019, 40(2): 98-103. DOI: 10.12073/j.hjxb.2019400050
引用本文: 魏德强, 任旭隆, 王荣, 吕少鹏. 45钢电子束扫描表面W合金化组织和硬度[J]. 焊接学报, 2019, 40(2): 98-103. DOI: 10.12073/j.hjxb.2019400050
WEI Deqiang, REN Xulong, WANG Rong, LV Shaopeng. Microstructure and hardness of W alloy on 45 steel by electron beam scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 98-103. DOI: 10.12073/j.hjxb.2019400050
Citation: WEI Deqiang, REN Xulong, WANG Rong, LV Shaopeng. Microstructure and hardness of W alloy on 45 steel by electron beam scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 98-103. DOI: 10.12073/j.hjxb.2019400050

45钢电子束扫描表面W合金化组织和硬度

基金项目: 

国家自然科学基金项目(51665009);广西自然科学基金重点项目(2017GXNSFDA198007)

详细信息
    作者简介:

    魏德强,男,1963年出生,教授,硕士研究生导师. 主要研究方向为材料表面强化处理. Email: wdq1963@sina.com

  • 中图分类号: TG 495

Microstructure and hardness of W alloy on 45 steel by electron beam scanning

  • 摘要: 电子束扫描表面合金化技术可以改善钢铁材料的组织及性能. 采用等离子热喷涂技术和电子束扫描技术对45钢表面进行熔覆合金化处理. 研究电子束扫描对强化层组织和硬度的影响,探讨了电子束功率、扫描速度对强化层组织和硬度的影响规律. 结果表明,45钢经表面合金化处理后,其表面可分为合金化区、热影响区和基体区. 合金化区的显微组织为针状马氏体和碳化钨颗粒,硬度为1 250 HV,是基体硬度的5倍. 热影响区的组织为针状马氏体和铁素体,硬度为860 HV,是基体的3倍. 基体区的组织为珠光体和铁素体. 电子束工艺参数对强化层组织和硬度有较大影响,强化层厚度随电子束功率的增加而增大,随着扫描速度的增加而减小.
    Abstract: The microstructure and properties of iron and steel materials can be improved by electron beam scanning surface alloying. In this paper, the surface of 45 steel is treated by cladding alloy by plasma spraying technology and electron beam scanning technique. The effect of electron beam scanning on the strengthened layer was investigated. The results show that 45 steel treated by surface alloying, the surface can be divided into alloying zone, heat affected zone and the base zone. The microstructure of the alloying zone was acicular martensite and tungsten carbide particles, the microhardness is 1 250 HV, which was 5 times of the substrate; the microstructure of the heat affected zone is acicular martensite and ferrite. The microhardness was 860 HV, which was 3 times of the substrate. The microstructure of the substrate was pearlite and ferrite. The technological parameters of the electron beam had great influence on microstructure and hardness of the strengthened layer. The thickness of the strengthened layer increased with the increase of the beam power, and decreased with the increase of the scanning speed.
  • [1]

    Luo X, Yao Z, Zhang P, et al. Tribological behaviors of Fe-Al-Cr-Nb alloyed layer deposited on 45 steel via double glow plasma surface metallurgy technique[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(11): 3694 − 3699.

    [2]

    Wang Yang, Wang Shuqi, Wei Minxian, et al. Study on wear behavior and wear mechanism of 45 steel[J]. Hot Working Technology, 2010(16): 11 − 14

    [3]

    Wang Dongsheng, Tian Zongjun, Wang Jingwen, et al. Effect of laser remelting on erosion behavior of plasma sprayed thermal barrier coatings[J]. Transactions of the China Welding Institution, 2011, 32(2): 5 − 8

    [4]

    Zhu X L, Yao Z J, Gu X D, et al. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 143 − 148.

    [5]

    Han Jiandong, Lin Feng, Qi Haibo, et al. Effect of powder preheating on electron beam selective melting process[J]. Transactions of the China Welding Institution, 2008, 29(10): 77 − 80

    [6] 王 洋, 王树奇, 魏敏先, 等. 45钢磨损性能和磨损机制的研究[J]. 热加工工艺, 2010(16): 11 − 14
    [7] 王东生, 田宗军, 王泾文, 等. 激光重熔对等离子喷涂热障涂层冲蚀行为影响[J]. 焊接学报, 2011, 32(2): 5 − 8
    [8]

    Luo D, Tang G, Ma X, et al. The microstructure of Ta alloying layer on M50 steel after surface alloying treatment induced by high current pulsed electron beam[J]. Vacuum, 2017, 136: 121 − 128.

    [9] 韩建栋, 林 峰, 齐海波, 等. 粉末预热对电子束选区熔化成形工艺的影响[J]. 焊接学报, 2008, 29(10): 77 − 80
    [10]

    Valkov S, Petrov P, Lazarova R, et al. Formation and characterization of Al-Ti-Nb alloys by electron-beam surface alloying[J]. Applied Surface Science, 2016, 389: 768 − 774.

    [11]

    Lu T, Tan Y, Shi S, et al. Continuous electron beam melting technology of silicon powder by prefabricating a molten silicon pool[J]. Vacuum, 2017, 143: 336 − 343.

    [12]

    Zhang J, Yu H U, Tan X, et al. Microstructure and high temperature tribological behavior of laser cladding Ni60A alloys coatings on 45 steel substrate[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1525 − 1532.

    [13]

    Efremov A M, Ivanov Y F, Itin V I, et al. Phase and structural transformations in iron and carbon steel induced by megavolt high-current electron beam[J]. MRS Online Proceedings Library Archive, 1992, 279: 401.

    [14]

    Matějíček J, Vilémová M, Nevrlá B, et al. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber[J]. Surface and Coatings Technology, 2017, 318: 217 − 223.

    [15]

    Kim J, Kim J S, Kang E G, et al. Surface modification of the metal plates using continuous electron beam process (CEBP)[J]. Applied Surface Science, 2014, 311: 201 − 207.

    [16]

    Kubatík T F, Lukáč F, Stoulil J, et al. Preparation and properties of plasma sprayed NiAl10 and NiAl40 coatings on AZ91 substrate[J]. Surface and Coatings Technology, 2017, 319: 145 − 154.

计量
  • 文章访问数:  144
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27

目录

    /

    返回文章
    返回