高级检索

基于最小二乘支持向量机的激光拼焊焊缝识别

邹媛媛, 左克铸, 房灵申, 李鹏飞

邹媛媛, 左克铸, 房灵申, 李鹏飞. 基于最小二乘支持向量机的激光拼焊焊缝识别[J]. 焊接学报, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
引用本文: 邹媛媛, 左克铸, 房灵申, 李鹏飞. 基于最小二乘支持向量机的激光拼焊焊缝识别[J]. 焊接学报, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
Citation: ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046

基于最小二乘支持向量机的激光拼焊焊缝识别

基金项目: 

国家自然科学基金资助项目(51405481);辽宁省教育厅科研资助项目(LJZ2016016);江苏省产学研合作项目(BY2015063-01);沈阳建筑大学学科涵育计划资助项目(XKHY2-32)

详细信息
    作者简介:

    邹媛媛,女,1981年出生,博士,副教授,硕士研究生导师. 主要从事焊缝跟踪与质量检测方面的科研工作. 发表论文20余篇. Email: yyzou@sjzu.edu.cn

  • 中图分类号: TG 409

Recognition of weld seam for tailored blank laser welding based on least square support vector machine

  • 摘要: 激光拼焊焊缝质量结构光视觉检测中,对焊缝的准确识别是实现高精度检测的关键. 针对检测图像中结构光光纹畸变特征不明显,无法准确识别焊缝的问题,依据焊缝纹理特征信息,提出了一种基于最小二乘支持向量机的焊缝识别方法. 首先,分析并提取焊缝区和非焊缝区差异明显的纹理特征. 其次,训练最小二乘支持向量机模型,对焊缝进行粗识别. 最后,采用Laws纹理滤波提取焊缝区域,并通过阈值分割方法精确识别焊缝. 针对不同工艺参数下的激光拼焊焊缝开展焊缝识别试验,结果表明,该方法能够有效地识别焊缝.
    Abstract: Accurate recognition of weld seam was the key for structural-light visual inspection of weld quality with high precision in tailored blank laser welding. Because of the problem that when the distortion of laser stripe was not obvious in the image and the welding seam cannot be recognized accurately, a recognition method according to the texture information of weld seam based on least squares support vector machine was proposed in this paper. Firstly, the textural features of the image were analysed and the textural features which had obvious difference between weld seam region and non-welded region were extracted. Secondly, the least square support vector machine model was trained and the coarse recognition of weld seam was accomplished. Finally, a fine recognition was achieved by Laws texture filter and threshold segmentation. The recognition experiments were carried out for weld seam in different welding parameters and the results showed that the weld seam can be recognized effectively by this method.
  • [1]

    Irving B. Welding tailored blanks is hot issue for automakers[J]. Welding Journal, 1995, 74(8): 49 − 52.

    [2]

    Xia Weisheng, Liu Fen, Wei Chunhua, et al. Prediction and finite element analysis of the mechanical properties of heat affected zone of laser welded blanks[J]. Transactions of the China Welding Institution, 2016, 37(3): 79 − 82

    [3]

    Fu Xibin, Lin Sanbao, Yang Chunli, et al. Inspection of fillet weld shape dimension based on laser vision sensing[J]. Transactions of the China Welding Institution, 2008, 29(7): 47 − 50

    [4] 夏卫生, 刘 奋, 韦春华, 等. 激光拼焊板HAZ力学性能的预测及有限元分析[J]. 焊接学报, 2016, 37(3): 79 − 82
    [5]

    Chen Yanbin, Tao Wang, Li Liqun, et al. Visual sensing and morphological image processing of weld pool in laser spot welding[J]. China Welding, 2010, 19(2): 70 − 74.

    [6]

    Wang Pingjiang, Wu Jiayong, Chen Jihong, et al. A method for measuring seam topograph in tailored blank laser welding[J]. China Mechanical Engineering, 2010, 21(17): 2132 − 2137

    [7]

    Nguyen H C, Lee B R. Laser-vision-based quality inspection system for small-bead laser welding[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3): 415 − 423.

    [8]

    Song Zhaoqing, Cheng Zijun, Zheng Su, et al. Research on the fingerprint image recognition based on smooth filter and least square support vector machine[J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(2): 172 − 176, 180

    [9] 伏喜斌, 林三宝, 杨春利, 等. 基于激光视觉传感的角焊缝外形尺寸检测[J]. 焊接学报, 2008, 29(7): 47 − 50
    [10]

    Wang Shenghua, Du Dong, Zeng Kai, et al. Weld recognition based on texture feature[J]. Transactions of the China Welding Institution, 2008, 29(11): 5 − 8

    [11]

    Chen Ying, Yang Fengyu, Fu Xiang. Method of texture image segmentation based on SVM and gray level co-occurrence matrix[J]. Transducer and Microsystem Technologies, 2012, 31(9): 60 − 63

    [12]

    Xu M, Zhao M Y, Zhang C N. Image processing method for weld quality inspection system of tailored blanks laser welding[C]// 2010 International Conference on Measuring Technology and Mechatronics Automation. Changsha 2010: 422–426.

    [13] 王平江, 吴家勇, 陈吉红, 等. 激光焊接中狭窄对接拼缝测量方法[J]. 中国机械工程, 2010, 21(17): 2132 − 2137
    [14]

    Park S, Lee HS, Kim J. Seed growing for interactive image segmentation using SVM classification with geodesic distance[J]. Electronics Letters, 2017, 53(1): 22 − 23.

    [15] 宋召青, 程子君, 郑 苏, 等. 基于平滑滤波与最小二乘支持向量机的指纹图像识别研究[J]. 海军航空工程学院学报, 2010, 25(2): 172 − 176

    , 180

    [16] 王胜华, 都 东, 曾 凯, 等. 基于纹理特征的焊缝识别方法[J]. 焊接学报, 2008, 29(11): 5 − 8
    [17] 陈 英, 杨丰玉, 符 祥. 基于支持向量机和灰度共生矩阵的纹理图像分割方法[J]. 传感器与微系统, 2012, 31(9): 60 − 63
    [18]

    Laws K I. Textured image segmentation[D]. University of Southern California, 1980.

计量
  • 文章访问数:  158
  • HTML全文浏览量:  3
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11

目录

    /

    返回文章
    返回