Numerical analysis of transient process in laser keyholing spot welding
-
摘要: 考虑工件表面等离子体作用,建立了小孔和熔池传热与传质耦合的穿孔点焊数值分析模型. 采用随小孔形状变化的自适应热源模型,热源形态依小孔形状变化而实时改变. 模型考虑了蒸发现象所引起的质量转换和能量损失,利用焓–孔介质法处理焊接过程动量损耗. 主要考虑液态金属蒸发所带来的反冲压力、表面张力和液体静压力并通过流体体积方程计算小孔壁面. 结果表明,小孔形成直至穿孔过程都可能产生向上和向下的飞溅、焊瘤和余高. 激光的瑞利散射、工件表面等离子体的热效应,激光束反射和等离子体膨胀作用,使得工件上/下的焊缝宽度比中间略大. 模拟计算值与试验结果比较,二者在形状和尺寸基本吻合.Abstract: Considering plasma effect on the surface of the workpiece, a numerical simulation model of keyhole and weld pool coupled with heat and mass transfer was established. The adaptive heat source model was used with the change of shape of keyhole in real time. Mass transfering and energy lossing caused by evaporation was considered in the model, and the momentum sinking due to solidification was dealt with enthalpy-porosity technique. The keyhole wall was calculated by fluid volume equation, mainly considering recoil pressure induced by the metal evaporation, surface tension and hydrostatic pressure. The results demonstrated that, spatters are shaped such as weld flash and reinforcement after keyhole formation and perforation. The upper and lower welding width is slightly larger than the middle induced by raleigh scattering of laser, reflection and expansion of plasma. The calculated values were basically consistent with the experimental results in shape and size of the weld.
-
Keywords:
- spot welding /
- deep penetration welding /
- transient process /
- raleigh scattering /
- keyhole
-
-
[1] Cho W I, Na S J, Thomy C, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2012, 212(1): 262 − 275.
[2] Pang Shengyong, Chen Liliang, Yin Yajun, et al. Simulations of transient keyhole and dynamic melt pool behaviors during laser welding[J]. Transactions of the China Welding Institution, 2010, 31(2): 71 − 73
[3] Zhou J, Tsai H L. Investigation of mixing and diffusion processes in hybrid spot laser–MIG keyhole welding[J]. Journal of Physics D: Applied Physics, 2009, 42: 1 − 15.
[4] Wang Renping, Lei Yonglei, Shi Yaowu, et al. Numerical simulation of keyhole formation process in laser deep penetration welding[J]. Transactions of the China Welding Institution, 2010, 31(11): 38 − 40
[5] 庞盛永, 陈立亮, 殷亚军, 等. 激光焊接瞬态小孔与运动熔池行为模拟[J]. 焊接学报, 2010, 31(2): 71 − 73 [6] Zhang Yi, Liu Xixia, Shi Rukun, et al. Numerical simulation of deep-penetration laser welding based on level-set method[J]. Transactions of the China Welding Institution, 2016, 37(4): 29 − 34
[7] Li Yan, Feng Yanhui, Zhang Xinxin, et al. A dynamic heat source model with respect to keyhole evolution in plasma arc welding[J]. Acta Metallurgica Sinica, 2013, 49(7): 804 − 810
[8] 汪任凭, 雷永平, 史耀武, 等. 激光深熔焊中匙孔形成过程的动态模拟[J]. 焊接学报, 2010, 31(11): 38 − 40 [9] Matsunawa A, Mizutani M, Katayama S, et al. Porosity formation mechanism and its prevention in laser welding[J]. Welding International, 2003, 17(6): 431 − 437.
[10] Zhang Tao, Wu Chuansong, Chen Maoai, et al. Modelling fluid flow and heat transfer phenomena in keyholing stage of plasma arc welding[J]. Acta Metallurgica Sinica, 2012, 48(9): 1025 − 1032
[11] Mickael C, Muriel C, Philippe L M, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding[J]. Journal of Physics D: Applied Physics, 2013, 46: 1 − 14.
[12] Xu Guoxiang, Zhang Weiwei, Liu Peng, et al. Numerical analysis of fluid flow in Laser+GMAW hybrid welding[J]. Acta Metallurgica Sinica, 2015, 51(6): 713 − 723.
[13] Zhao H Y, Niu W D, Zhang B, et al. Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding[J]. Journal of Physics D: Applied Physics, 2011, 44: 1 − 13.
[14] Rai R, Burgardt P, Milewski J O, et al. Heat transfer and fluid flow during electron beam welding of 21Cr–6Ni–9Mn steel and Ti6Al4V alloy[J]. Journal of Physics D: Applied Physics, 2009, 42: 1 − 12.
[15] 张 屹, 刘西霞, 史如坤, 等. 基于Level-Set方法的小孔及熔池动态形成数值模拟[J]. 焊接学报, 2016, 37(4): 29 − 34 [16] 李 岩, 冯妍卉, 张欣欣, 等. 考虑小孔演变的等离子弧焊接动态热源模型及验证[J]. 金属学报, 2013, 49(7): 804 − 810 [17] 李天庆. 等离子弧热-力作用随熔池穿孔动态演变过程的数值分析[D]. 济南: 山东大学, 2014. [18] 张 涛, 武传松, 陈茂爱, 等. 穿孔等离子弧焊接熔池流动和传热过程的数值模拟[J]. 金属学报, 2012, 48(9): 1025 − 1032 [19] Siegman A E. Defining, measuring, and optimizing laser beam quality[J]. SPIE, 1990, 1224: 2 − 13.
[20] 胥国祥, 张卫卫, 刘 朋, 等. 激光+GMAW复合热源焊熔池流体流动的数值分析[J]. 金属学报, 2015, 51(6): 713 − 723 -
期刊类型引用(9)
1. 白子键,李治文,张志芬,秦锐,张帅,徐耀文,温广瑞. 基于电弧光谱的核电堵管TIG焊接质量在线监测. 焊接学报. 2024(05): 8-19 . 本站查看
2. 肖笑,王雪晴,张弛,葛学元,李芳. 基于ReliefF算法的钛合金电弧增材沉积层尺寸与光谱特性的相关性分析. 光谱学与光谱分析. 2024(07): 2002-2010 . 百度学术
3. 董向成,晏丽琴. 氩光谱诊断TIG焊电弧等离子体温度方法研究. 甘肃高师学报. 2023(05): 6-9 . 百度学术
4. 董向成,晏丽琴. 光谱法诊断TIG焊焊接电弧温度实验研究. 黑河学院学报. 2023(12): 182-184 . 百度学术
5. 陈艳菲,彭洪晟,王俊涛,王洪伟. 基于MobileNet卷积神经网络的焊缝缺陷识别. 自动化与仪表. 2022(01): 49-54 . 百度学术
6. 董向成,王国伟,陈建宏. 闪电等离子体连续光谱轮廓形成机理研究(英文). 中国光学. 2021(05): 1243-1250 . 百度学术
7. 付娟,赵勇,邹家生,贾占君,贺宇翔. 铝合金非熔化极直流正接氦弧焊氧化膜撕裂机理. 焊接学报. 2021(12): 87-90+102 . 本站查看
8. 樊丁,胡桉得,黄健康,徐振亚,徐旭. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法. 焊接学报. 2020(01): 7-11+97 . 本站查看
9. 刘丹,罗震,敖三三,刘云鸾. 国际焊接技术发展新趋势——第24届北京·埃森焊接与切割展览会焊接国际论坛综述(下). 焊接技术. 2020(10): 1-4 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 175
- HTML全文浏览量: 4
- PDF下载量: 11
- 被引次数: 14