[1] |
李明娜, 刘 峰. 拉保持对316L奥氏体不锈钢焊接接头低周疲劳循环应力响应及损伤机制的影响[J]. 焊接学报, 2014, 35(9): 87 ? 91 Li Mingna, Liu Feng. Effect of tensile dwell on low cycle fatigue cyclic stress response and damage mechanism of 316L austenitic stainless steel welding joint[J]. Transactions of the China Welding Institution, 2014, 35(9): 87 ? 91
|
[2] |
Liu F, Hwang Y H, Nam S W. The effect of post weld heat treatment on the creep-fatigue behavior of gas tungsten arc-welded 308L stainless steel[J]. Materials Science Engineering, 2006, 427(1–2): 35 ? 41.
|
[3] |
Laha K, Saroja S, Moitra A, et al. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties[J]. Journal of Nuclear Materials, 2013, 43(1–3): 41 ? 50.
|
[4] |
Li S, Xuan F, Tu S, et al. Interfacial fatigue crack growth behavior of diffusion bonded joints of 316L stainless steel[J]. Materials Science & Technology, 2010, 18(1): 141 ? 144.
|
[5] |
陈志平, 蒋家羚, 陈 凌. 1.25Cr0.5Mo钢疲劳-蠕变交互作用的损伤研究[J]. 金属学报, 2007, 43(6): 637 ? 642 Chen Zhiping, Jiang Jialing, Chen Ling. Research on fatigue-creep interaction damage of steel 1.25Cr0.5Mo[J]. Acta Metallurgica Sinica, 2007, 43(6): 637 ? 642
|
[6] |
范志超, 蒋家羚, 陈学东. 16MnR钢疲劳与循环蠕变交互作用损伤力学模型[J]. 浙江大学学报(工学版), 2006, 40(2): 317 ? 321 Fan Zhichao, Jiang Jialing, Chen Xuedong. Continuum damage mechanics model of interaction between fatigue and cyclic creep of 16Mn R steel[J]. Journal of Zhengjiang University (Engineering Science), 2006, 40(2): 317 ? 321
|
[7] |
姜运建, 荆洪阳, 徐连勇, 等. 焊接残余应力对P92钢Ⅳ型蠕变开裂的影响[J]. 焊接学报, 2011, 32(1): 16 ? 20 Jiang Yunjian, Jing Hongyang, Xu Lianyong, et al. Effect of welding residual stress on Ⅳ creep crack for P92 steel[J]. Transactions of the China Welding Institution, 2011, 32(1): 16 ? 20
|
[8] |
Prasad Reddy G V, Sandhya R, Valsan M, et al. Temperature low cycle fatigue properties of 316(N) weld metal and 316L(N)/316(N) weld joints[J]. International Journal of Fatigue, 2008, 30(3): 538 ? 546.
|
[9] |
中国国家标准化管理委员会. 金属材料轴向等幅低循环疲劳试验力法: GB/T15248-2008[S]. 北京: 中国标准出版社, 2008.
|
[10] |
刘 峰, 綦振国, 何 君. 焊后热处理对308L奥氏体不锈钢焊缝蠕变–疲劳损伤机制的影响[J]. 焊接学报, 2010, 31(3): 65 ? 68 Liu Feng, Qi Zhenguo, He Jun. Post weld heat treatment effect on the damage mechanism of gas tungsten arc-welded 308L stainless steel during creep-fatigue[J]. Transactions of the China Welding Institution, 2010, 31(3): 65 ? 68
|
[11] |
陈学东, 范志超, 陈 凌, 等. 三种疲劳蠕变交互作用寿命预测模型的比较及其应用[J]. 机械工程学报, 2007, 43(1): 62 ? 68 Chen Xuedong, Fan Zhichao, Chen Ling, et al. Comparison among three fatigue-creep interaction life prediction models and their applications[J]. Journal of Mechanical Engineering, 2007, 43(1): 62 ? 68
|
[12] |
范志超, 陈学东, 陈 凌, 等. 基于延性耗竭理论的疲劳蠕变寿命预测方法[J]. 金属学报, 2006, 42(4): 415 ? 420 Fan Zhichao, Chen Xuedong, Chen Ling, et al. Prediction method of fatigue-creep interaction life based on ductility exhaustion theory[J]. Acta Metallurgica Sinica, 2006, 42(4): 415 ? 420
|
[13] |
Chen L, Jiang J, Fan Z, et al. A new model for life predication of fatigue-creep interaction[J]. International Journal of Fatigue, 2007, 29(4): 615 ? 619.
|
[14] |
陈 凌, 张贤明, 欧阳平. 一种疲劳-蠕变交互作用寿命预测模型及试验验证[J]. 中国机械工程, 2015, 26(10): 1356 ? 1361 Chen Ling, Zhang Xianming, Ou Yangping. A model of life predication for fatigue-creep interaction and its experimental verification[J]. China Mechanical Engineering, 2015, 26(10): 1356 ? 1361
|