高级检索

轴肩作用下的金属流动过程分析

孙宏宇,周琦,朱军,彭勇,王克鸿

孙宏宇,周琦,朱军,彭勇,王克鸿. 轴肩作用下的金属流动过程分析[J]. 焊接学报, 2019, 40(1): 137-140. DOI: 10.12073/j.hjxb.2019400027
引用本文: 孙宏宇,周琦,朱军,彭勇,王克鸿. 轴肩作用下的金属流动过程分析[J]. 焊接学报, 2019, 40(1): 137-140. DOI: 10.12073/j.hjxb.2019400027
SUN Hongyu, ZHOU Qi, ZHU Jun, PENG Yong, WANG Kehong. Analysis on the process of metal flow under the shoulder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 137-140. DOI: 10.12073/j.hjxb.2019400027
Citation: SUN Hongyu, ZHOU Qi, ZHU Jun, PENG Yong, WANG Kehong. Analysis on the process of metal flow under the shoulder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 137-140. DOI: 10.12073/j.hjxb.2019400027

轴肩作用下的金属流动过程分析

Analysis on the process of metal flow under the shoulder

  • 摘要: 采用阳极氧化的方法在待焊试板表面制备标记氧化膜作为标记材料,研究搅拌摩擦焊轴肩作用下的金属流动行为. 结果表明,标记氧化膜在焊缝中连续分布,从焊缝截面观察整体呈“C”形. 流动过程分析表明标记氧化膜处于轴肩前部时,金属向焊缝后退侧的外侧流动;标记氧化膜处于轴肩后部时,金属向焊缝中心流动,此外由于竖直方向上的速度差异使得标记氧化膜最终呈“C”形. 从标记氧化膜的分布位置来看,轴肩作用下的金属有从前进侧向后退侧迁移的趋势,金属迁移数量取决于所选择的焊接参数.
    Abstract: The oxidation film as marking material was prepared and marked on the surface of test panel to be welded with the method of anodic oxidation, to research the metal flow behavior of friction stir welding under the action of shaft shoulder. The results showed that the marked oxidation film distributed continuously in welding line, which presents “C” shape as a whole. The analysis on flowing process showed that when the marked oxidation film was in the forepart of shaft shoulder, the metal flowed towards lateral of retreating side of welding line; when it was in the rear of shaft shoulder, the metal flowed towards the center of welding line. In addition, the oxidation film presented “C” shape finally due to the velocity contrast on the vertical direction. From distributed localization of oxidation film, the metal under the action of shaft shoulder migrated from advancing side to retreating side, the migration amount of metal depended on the selected welding parameters.
  • [1] 王希靖, 韩晓辉, 李常锋, 等. 厚铝合金板搅拌摩擦焊塑性金属不同深度的水平流动状况[J]. 中国有色金属学报, 2005(2): 198 ? 204
    Wang Xijing, Han Xiaohui, Li Changfeng, et al. Horizontal flow status of plastic metal in different depth during friction stir welding for thick aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2005(2): 198 ? 204
    [2] 李继忠, 马正斌, 董春林, 等. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程, 2014(6): 1 ? 4, 10
    Li Jizhong, Ma Zhengbin, Dong Chunlin, et al. Material flowing behaviors of friction stir welding by dissimilar aluminum alloys[J]. Journal of Materials Engineering, 2014(6): 1 ? 4, 10
    [3] Li W, Li J, Zhang Z, et al. Metal flow during friction stir welding of 7075-t651 aluminum alloy[J]. Experimental Mechanics, 2013, 53(9): 1573 ? 1582.
    [4] Lorrain O, Favier V, Zahrouni H, et al. Understanding the material flow path of friction stir welding process using unthreaded tools[J]. Journal of Materials Processing Technology, 2010, 210(4): 603 ? 609.
    [5] 游国强, 谭 霞, 赵 旭, 等. 搅拌摩擦焊材料塑性流动可视化研究现状[J]. 兵器材料科学与工程, 2014(02): 111 ? 116
    You Guoqiang, Tan Xia, Zhao Xu, et al. Research propress of plastic flow visualization technique of friction stir welding[J]. Ordnance Material Science and Engineering, 2014(02): 111 ? 116
    [6] 张利国, 姬书得, 姜秀萍, 等. 焊接工艺参数对2024铝合金搅拌摩擦焊过程中材料塑性流动行为的影响[J]. 热加工工艺, 2012(11): 152 ? 154
    Zhang Liguo, Ji Shude, Jiang Xiuping, et al. Effect of welding parameters on plastic flow behavior of 2024 aluminum alloy during friction stir welding[J]. Hot Working Technology, 2012(11): 152 ? 154
    [7] 于勇征, 罗 宇, 栾国红, 等. 铝合金LD10-LF6搅拌摩擦焊的金属塑性流动[J]. 焊接学报, 2004, 25(6): 115 ? 118
    Yu Yongzheng, Luo Yu, Luan Guohong, et al. Metal plastic flow in friction stir welding of aluminum alloy LD10-LF6[J]. Transactions of the China Welding Institution, 2004, 25(6): 115 ? 118
    [8] 刘会杰, 潘 庆, 孔庆伟, 等. 搅拌摩擦焊焊接缺陷的研究[J]. 焊接, 2007(2): 17 ? 21, 61
    Liu Huijie, Pan Qing, Kong Qingwei, et al. Research on welding defects in friction stir welding[J]. Welding & Joining, 2007(2): 17 ? 21, 61
    [9] Colegrove P A, Shercliff H R. Two-dimensional CFD modelling of flow round profiled FSW tooling[J]. Science and Technology of Welding and Joining, 2004, 9(6): 483 ? 492.
    [10] Heurtier P, Jones M, Desrayaud C, et al. Mechanical and thermal modelling of friction stir welding[J]. Journal of Materials Processing Technology, 2006, 171(3): 348 ? 357.
  • 期刊类型引用(6)

    1. 苏才津,秦南南,冯哲,张丽. 激光熔覆铁基合金涂层熔覆质量形貌预测. 四川冶金. 2025(01): 16-21 . 百度学术
    2. 胡雅楠,余欢,吴圣川,奥妮,阚前华,吴正凯,康国政. 基于机器学习的增材制造合金材料力学性能预测研究进展与挑战. 力学学报. 2024(07): 1892-1915 . 百度学术
    3. 惠记庄,骆伟,阎志强,王俊杰,吕景祥,郭许,张浩. AlSi10Mg选区激光熔化表面粗糙度预测、优化及表面形貌分析. 表面技术. 2024(15): 129-140+151 . 百度学术
    4. 鲁芬,郁伯铭. 人工神经网络的激光熔覆层特征分析. 激光杂志. 2023(04): 254-258 . 百度学术
    5. 穆伟豪,陈雪辉,张雨,黄磊,朱达荣,董必春. 316L不锈钢选区激光熔化表面的形貌分析与粗糙度预测. 激光与光电子学进展. 2022(07): 255-262 . 百度学术
    6. 丁宏德,朱春明,唐斌,顾小燕. 316L不锈钢SLM件与锻件的激光焊接头微观组织与性能. 焊接. 2021(05): 9-14+63 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  972
  • HTML全文浏览量:  27
  • PDF下载量:  8
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-06-13

目录

    /

    返回文章
    返回