高级检索

焊接接头热影响区裂纹启裂行为的探讨

凌堃,黄笑梅

凌堃,黄笑梅. 焊接接头热影响区裂纹启裂行为的探讨[J]. 焊接学报, 2019, 40(1): 124-130. DOI: 10.12073/j.hjxb.2019400025
引用本文: 凌堃,黄笑梅. 焊接接头热影响区裂纹启裂行为的探讨[J]. 焊接学报, 2019, 40(1): 124-130. DOI: 10.12073/j.hjxb.2019400025
LING Kun, HUANG Xiaomei. Discussion of HAZ crack initiation behaviour of mismatched welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 124-130. DOI: 10.12073/j.hjxb.2019400025
Citation: LING Kun, HUANG Xiaomei. Discussion of HAZ crack initiation behaviour of mismatched welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 124-130. DOI: 10.12073/j.hjxb.2019400025

焊接接头热影响区裂纹启裂行为的探讨

Discussion of HAZ crack initiation behaviour of mismatched welded joints

  • 摘要: 针对结构完整性评定中焊接接头难以评估问题,文中通过非匹配焊接接头“三材料”结构模型,建立热影响区中心裂纹启裂临界应力的失效评定图预测方法. 基于有限元ABAQUS软件分析,研究焊接接头热影响区裂纹启裂. 结果表明,高匹配焊缝促进热影响区裂纹启裂,软化的热影响区促进热影响区裂纹启裂,低匹配焊接接头,热影响区软化时,增加热影响区宽度促进热影响区裂纹启裂;热影响区硬化时,减小热影响区宽度促进热影响区裂纹启裂. 高匹配焊接接头,热影响区无论软化、硬化,增加热影响区宽度均促进热影响区裂纹启裂.
    Abstract: For structural integrity assessment of welded joints is difficult to assess, the failure assessment diagram prediction method for the critical stress of heat affected zone crack initiation of welded joints is established by using the "tri-material" assumption model of mismatched welded joints. Based on the finite element analysis of ABAQUS software, the crack initiation in the heat affected zone of welded joint is studied. Results indicated that over-matching weld promoted the HAZ crack initiation in mismatched welded joints. HAZ strength softening promoted the HAZ crack initiation in mismatched welded joints. When MW<1, MH<1, with the increase of heat affected zone width, it promoted the HAZ crack initiation, MH>1, with the decrease of heat affected zone width, it promoted the HAZ crack initiation. When MW>1, whether HAZ strength softening or hardening, with the increase of heat affected zone width, they promoted the HAZ crack initiation.
  • [1] 尹建成. JIC测试方法研究与某船体钢焊接结构的失效评定[D]. 哈尔滨: 哈尔滨工程大学, 2005.
    [2] Ogawa T, Itatani M, Saito T, et al. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy[J]. International Journal of Pressure Vessels and Piping, 2012, 90-91: 61 ? 68.
    [3] Wang H T, Wang G Z, Wuan F Z, et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant[J]. Engineering Failure Analysis, 2013, 28: 134 ? 148.
    [4] Qiu H, Awaguchi Y K. Strength and deformability of welded joints of 780MPa grade steel plates[J]. Materials Science and Engineering, 2003, A348: 22 ? 28.
    [5] Spurrier J, Hancock P, Chubb J P. An assessment of weld mismatching[J]. Engineering Fracture Mechanics, 1996, 53(4): 581 ? 592.
    [6] Jua J B, Kimb W S, Jang J I. Variations in DBTT and CTOD within weld heat-affected zone of APIX65 pipeline steel[J]. Materials Science and Engineering, 2012, A546: 258 ? 262.
    [7] Lei Y, Shi Y W, Murakaws H, et al. The effect of mechanical heterogeneity and limit load of a weld joint with longitudinal weld crack on the J-integral and failure assessment curve[J]. International Journal of Pressure Vessels and Piping, 1998, 75(8): 625 ? 632.
    [8] Gustavo M, Castelluccio, Juan E, et al. Fracture testing of the heat affected zone from welded steel pipes using an in situ stage[J]. Engineering Fracture Mechanics, 2013, 98: 52 ? 63.
    [9] Kim S H, Kang Y J, Lee Ch H. Variation in microstructures and mechanical properties in the coarse-grained heat-affected zone of low-alloy steel with boron content[J]. Materials Science and Engineering, 2013, A559: 178 ? 186.
    [10] 凌 堃, 王正东, 轩福贞. 计入热影响区的焊接接头极限载荷计算[J]. 焊接学报, 2013, 34(11): 17 ? 21
    Ling Kun, Wang Zhengdong, Xuan Fuzhen. Effects of HAZ on limit loads for mismatched welded joints[J]. Transactions of the China Welding Institution, 2013, 34(11): 17 ? 21
    [11] Ling K, Wang Z D, Xuan F Z. Numerical studies of estimation of fracture parameters for mismatched welded joints with HAZ cracks[J]. Journal of Iron and Steel Research International, 2015, 22(9): 846 ? 851.
    [12] Karlsson, Sorenson. ABAQUS scripting user's manual, version6.8[M]. ABAQUS Engineering Analysis Solutions Ltd., 2013.
    [13] 朱 亮. 力学性能失配焊接接头的强度及变形行为[D]. 兰州: 兰州理工大学, 2005.
    [14] 涂善东. 高温结构完整性[M]. 北京, 机械工业出版社, 2003.
    [15] 束德林. 金属力学性能[M]. 北京, 机械工业出版社, 1992.
    [16] Moltubakk T, Thaulow C, Zhang Z L. Application of local approach to inhomogeneous welds, Influence of crack position and strength mismatch[J]. Engineering Fracture Mechanics, 1999(62): 445 ? 462.
    [17] Zhang Z L, Thaulow C, Hauge M. Effects of crack size and weld metal mismatch on the HAZ cleavage toughness of wide plates[J]. Engineering Fracture Mechanics, 1997(57): 653 ? 664.
  • 期刊类型引用(14)

    1. 陈玉龙,别渭毅,鲁军,杨盼盼,张力. 超薄板脉冲激光焊接工艺特性及成形质量控制. 航天制造技术. 2024(01): 38-42 . 百度学术
    2. 张鑫源,孙振邦. 能量配比对铝合金激光-MIG复合焊接残余应力的影响. 焊接. 2024(06): 47-53 . 百度学术
    3. 赵轩. 激光加工在电梯钣金件制造领域中的应用. 中国电梯. 2024(11): 70-73 . 百度学术
    4. 张景祺,相志磊,王细波,雷永平,林健. 超薄板焊后波浪变形的形成原因及控制方法探讨. 机械工程学报. 2022(04): 72-79 . 百度学术
    5. 陆国强,赵航,吴馥云. 基于激光光栅载波技术的微位移测量方法. 激光杂志. 2022(04): 65-69 . 百度学术
    6. 张曌,李嘉宁. 激光精密加工成型技术及产业化应用. 中国铸造装备与技术. 2022(03): 16-22 . 百度学术
    7. 何建萍,吴鑫,吉永丰,卢飞. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理. 焊接学报. 2021(06): 77-84+101-102 . 本站查看
    8. 黄波,王旺,王佳,李轩,何庆中,左超. 全焊接球阀焊接残余应力及变形数值模拟. 油气储运. 2021(08): 895-902 . 百度学术
    9. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
    10. 钱伟,蒋明. 数字图像相关方法中数字散斑场的制作与应用研究. 液晶与显示. 2020(08): 861-869 . 百度学术
    11. 火巧英,闫海宁,涂本荣,陆安进. 焊接工艺参数对Q345NQR2耐候钢激光焊焊缝成形的影响. 焊接技术. 2020(08): 16-18+105-106 . 百度学术
    12. 王旺,王佳,曹修全,何庆中,刘惺. Q235钢等离子熔覆的残余应力及变形数值模拟. 特种铸造及有色合金. 2020(09): 975-979 . 百度学术
    13. 吴承隆,尹浩,黄泽涵. GH4169镍基高温合金脉冲激光焊工艺参数优化. 工具技术. 2020(10): 38-42 . 百度学术
    14. 朱国仁,庞立林,朱慨迅,杨明,王洪潇. 预拉伸对不锈钢电阻点焊接头疲劳寿命的影响. 焊接. 2020(11): 1-4+61 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  825
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 29
出版历程
  • 收稿日期:  2017-05-18

目录

    /

    返回文章
    返回