[1] |
?Thomas W M, Nicholas E D, Needham J C, et al. Friction stir welding: Great Britain, 9125978.8[P]. 1991-12-06.
|
[2] |
赵衍华, 林三宝, 吴 林. 2014铝合金搅拌摩擦焊接过程塑性金属流变可视化[J]. 焊接学报, 2005, 26(6): 73 ? 75 Zhao Yanhua, Lin Sanbao, Wu Lin. Visualization of the plastic material flow in friction stir welding of 2024 aluminum alloy[J]. Transactions of the China Welding Institution, 2005, 26(6): 73 ? 75
|
[3] |
陈高强, 史清宇. 搅拌摩擦焊接中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 ? 21 Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during friction stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 ? 21
|
[4] |
柯黎明, 邢 丽, 黄奉安. 搅拌摩擦焊接头形成过程的二维观察与分析[J]. 焊接学报, 2005, 26(3): 1 ? 4 Ke Liming, Xing Li, Huang Fengan. Two dimensional flow of plasticized materials in friction stir welded joints[J]. Transactions of the China Welding Institution, 2005, 26(3): 1 ? 4
|
[5] |
张 昭, 刘亚丽, 陈金涛, 等. 搅拌摩擦焊接过程中材料流动形式[J]. 焊接学报, 2007, 28(11): 17 ? 21 Zhang Zhao, Liu Yali, Chen Jintao, et al. The material flow in friction stir welding[J]. Transactions of the China Welding Institution, 2007, 28(11): 17 ? 21
|
[6] |
Colegrove P A, Shercliff, H R. 3-dimensional CFD modeling of flow round a threaded friction stir welding tool profile[J]. Journal of Materials Processing Technology, 2005, 169(2): 320 ? 327.
|
[7] |
Schmidt H, Hattel J. A local model for the thermomechanical conditions in friction stir welding[J]. Modeling and Simulation in Materials Science and Engineering, 2005, 13(1): 77 ? 93.
|
[8] |
Zhang H W, Zhang Z, Chen J T. 3D modeling of material flow in friction stir welding under different process parameters[J]. Journal of Materials Processing Technology, 2007, 183(1): 62 ? 70.
|
[9] |
Buffa G, Hua J, Shivpuri R, et al. A continuum based FEM model for friction stir welding-model development[J]. Materials Science and Engineering, 2006, 419(1-2): 389 ? 396.
|
[10] |
严 铿, 曹 亮, 陈华斌. 搅拌头倾角对FSW成形和接头力学性能的影响[J]. 焊接学报, 2005, 26(12): 35 ? 38 Yan Keng, Cao Liang, Chen Huabin. Effect of tool tilt angle on formation and mechanical property of FSW[J]. Transactions of the China Welding Institution, 2005, 26(12): 35 ? 38
|
[11] |
Jain R, Pal S K, Singh S B. A study on the variation of forces and temperature in a friction stir welding process: a finite element approach[J]. Journal of Manufacturing Process, 2016, 23: 278 ? 286.
|
[12] |
Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model[J]. Science and Technology of Welding and Joining, 2003, 8(3): 165 ? 174.
|
[13] |
Tello K E, Gerlich A P, Mendez P F. Constants for hot deformation constitutive models for recent experimental data[J]. Science and Technology of Welding and Joining, 2010, 15(3): 260 ? 266.
|
[14] |
Sellars C M, Tegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica et Materialia, 1966, 14(9): 1136 ? 1139.
|
[15] |
Frigaard O, Grong O, Midling O T. A process model for friction stir welding of age hardening aluminum alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(5): 1189 ? 1200.
|
[16] |
王细波. 铝合金搅拌摩擦焊完全热-力耦合模拟及流动行为研究[D]. 北京: 清华大学, 2010.
|
[17] |
Zhu Y C, Chen G Q, Qing Y S. Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction[J]. Material and Design, 2016, 108: 400 ? 410.
|