高级检索

搅拌摩擦焊接材料流动模型及在缺陷预测中的应用

龙玲,史清宇,刘铁,刘淅,孙占国

龙玲,史清宇,刘铁,刘淅,孙占国. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017
引用本文: 龙玲,史清宇,刘铁,刘淅,孙占国. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017
LONG Ling, SHI Qingyu, LIU Tie, LIU Xi, SUN Zhanguo. Modeling of material flow during friction stir welding and the application for defect prediction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017
Citation: LONG Ling, SHI Qingyu, LIU Tie, LIU Xi, SUN Zhanguo. Modeling of material flow during friction stir welding and the application for defect prediction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017

搅拌摩擦焊接材料流动模型及在缺陷预测中的应用

Modeling of material flow during friction stir welding and the application for defect prediction

  • 摘要: 为了研究搅拌头倾角对搅拌摩擦焊接过程的影响机理,基于DEFORM-3D软件建立了带倾角的FSW三维热-力耦合模型,模拟了搅拌摩擦焊接过程中焊缝区材料的三维运动轨迹,对比分析了有无倾角时FSW过程中材料流动行为的差异. 结果表明,前进侧材料绕搅拌针旋转后大部分沉积于搅拌头后方前进侧区域,返回侧的材料大部分被搅拌头旋推至后方而沉积;采用倾角可以增强搅拌头后方材料从返回侧运动至前进侧区间的流动性,同时还有利于增强材料在厚度方向的运动能力. 根据模拟的材料流动行为对接头缺陷进行了趋势预测,预测结果与试验结果吻合良好.
    Abstract: In order to research the mechanism influenced by the tilt angle of tool pin during friction stir welding, the thermal-mechanical coupled model considering the tilt angle was established based on DEFORM-3D software. The three-dimensional material flow in the welding seam region was simulated, and the difference of the material flow behavior influenced by tool tilt angle of 0° and 2° was compared and analyzed. The results showed that most of the materials in the front advancing side deposited in the region of rear advancing side after rotating around the tool pin, while most of the materials in the front retreating side were pushed by the tool pin and deposited in the rear region. It was observed that the tilt of tool pin increased the fluidity of the material between the rear retreating side and the rear advancing side, meanwhile, the flowing behavior in the thickness was increased accordingly. The simulation results of the joint morphology agreed well with the corresponding experimental results, which illustrated that the numerical model of the material flow considering the tool tilt angle can be used for predicting the tendency of welding joint defect.
  • [1] ?Thomas W M, Nicholas E D, Needham J C, et al. Friction stir welding: Great Britain, 9125978.8[P]. 1991-12-06.
    [2] 赵衍华, 林三宝, 吴 林. 2014铝合金搅拌摩擦焊接过程塑性金属流变可视化[J]. 焊接学报, 2005, 26(6): 73 ? 75
    Zhao Yanhua, Lin Sanbao, Wu Lin. Visualization of the plastic material flow in friction stir welding of 2024 aluminum alloy[J]. Transactions of the China Welding Institution, 2005, 26(6): 73 ? 75
    [3] 陈高强, 史清宇. 搅拌摩擦焊接中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 ? 21
    Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during friction stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 ? 21
    [4] 柯黎明, 邢 丽, 黄奉安. 搅拌摩擦焊接头形成过程的二维观察与分析[J]. 焊接学报, 2005, 26(3): 1 ? 4
    Ke Liming, Xing Li, Huang Fengan. Two dimensional flow of plasticized materials in friction stir welded joints[J]. Transactions of the China Welding Institution, 2005, 26(3): 1 ? 4
    [5] 张 昭, 刘亚丽, 陈金涛, 等. 搅拌摩擦焊接过程中材料流动形式[J]. 焊接学报, 2007, 28(11): 17 ? 21
    Zhang Zhao, Liu Yali, Chen Jintao, et al. The material flow in friction stir welding[J]. Transactions of the China Welding Institution, 2007, 28(11): 17 ? 21
    [6] Colegrove P A, Shercliff, H R. 3-dimensional CFD modeling of flow round a threaded friction stir welding tool profile[J]. Journal of Materials Processing Technology, 2005, 169(2): 320 ? 327.
    [7] Schmidt H, Hattel J. A local model for the thermomechanical conditions in friction stir welding[J]. Modeling and Simulation in Materials Science and Engineering, 2005, 13(1): 77 ? 93.
    [8] Zhang H W, Zhang Z, Chen J T. 3D modeling of material flow in friction stir welding under different process parameters[J]. Journal of Materials Processing Technology, 2007, 183(1): 62 ? 70.
    [9] Buffa G, Hua J, Shivpuri R, et al. A continuum based FEM model for friction stir welding-model development[J]. Materials Science and Engineering, 2006, 419(1-2): 389 ? 396.
    [10] 严 铿, 曹 亮, 陈华斌. 搅拌头倾角对FSW成形和接头力学性能的影响[J]. 焊接学报, 2005, 26(12): 35 ? 38
    Yan Keng, Cao Liang, Chen Huabin. Effect of tool tilt angle on formation and mechanical property of FSW[J]. Transactions of the China Welding Institution, 2005, 26(12): 35 ? 38
    [11] Jain R, Pal S K, Singh S B. A study on the variation of forces and temperature in a friction stir welding process: a finite element approach[J]. Journal of Manufacturing Process, 2016, 23: 278 ? 286.
    [12] Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model[J]. Science and Technology of Welding and Joining, 2003, 8(3): 165 ? 174.
    [13] Tello K E, Gerlich A P, Mendez P F. Constants for hot deformation constitutive models for recent experimental data[J]. Science and Technology of Welding and Joining, 2010, 15(3): 260 ? 266.
    [14] Sellars C M, Tegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica et Materialia, 1966, 14(9): 1136 ? 1139.
    [15] Frigaard O, Grong O, Midling O T. A process model for friction stir welding of age hardening aluminum alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(5): 1189 ? 1200.
    [16] 王细波. 铝合金搅拌摩擦焊完全热-力耦合模拟及流动行为研究[D]. 北京: 清华大学, 2010.
    [17] Zhu Y C, Chen G Q, Qing Y S. Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction[J]. Material and Design, 2016, 108: 400 ? 410.
  • 期刊类型引用(13)

    1. 罗璟玥,李晓博,刘小超,石磊,申志康,裴宪军,倪中华. 转速对铝/钢搅拌—涡流复合摩擦搭接焊接头微观组织和力学性能的影响. 焊接学报. 2025(02): 127-135 . 本站查看
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 廖利华,莫宇丹,刘克,张鹏,张文康,何洪. 搅拌针转速对6061-T6铝合金搅拌摩擦焊接头焊接温度及硬度分布的影响. 机械工程材料. 2024(09): 104-111 . 百度学术
    4. 方晨,刘胜胆,易铁,姜科达. 电阻辅助加热对2519A铝合金搅拌摩擦焊接成形性的影响. 焊接学报. 2023(11): 59-66+132 . 本站查看
    5. 李志强,陈辰,邹艳明. 基于DEFORM的6061铝合金FSW温度场及流场数值模拟. 焊接技术. 2022(03): 18-21+114 . 百度学术
    6. 万轶,陈林. 汽车盘体零件小飞边模锻成形工艺开发及数值分析. 材料科学与工艺. 2022(03): 44-50 . 百度学术
    7. 刘西畅,李文亚,高彦军,温泉. 铝合金双轴肩搅拌摩擦焊过程材料流动行为. 焊接学报. 2021(03): 48-56+101 . 本站查看
    8. 龙玲,杨泽云,王思源,孔德凝. 基于数值模拟的小匙孔搅拌摩擦点焊接头连接机理分析. 塑性工程学报. 2021(07): 199-204 . 百度学术
    9. 李落星,张鹏,易林峰,吴时盛,周巧英. 焊接速度对铝合金搅拌摩擦焊接头性能的影响. 湖南大学学报(自然科学版). 2021(12): 120-128 . 百度学术
    10. 张厶文,杨吉,杨琦,龙玲. 搅拌头几何形貌对无倾角搅拌摩擦焊焊缝成型的影响. 工程技术研究. 2021(22): 119-120 . 百度学术
    11. 孙宏宇,周琦,朱军,时孝东,孙智鸣. Deformation analysis of a friction stir-welded thin sheet aluminum alloy joint. China Welding. 2020(01): 56-62 . 百度学术
    12. 曾申波,陈高强,张弓,史清宇. T形接头角接静轴肩搅拌摩擦焊三维流动特征. 焊接学报. 2019(12): 1-5+161 . 本站查看
    13. 孙宏宇,周琦,朱军,时孝东,孙智鸣. 薄板铝合金搅拌摩擦焊接头变形情况分析. 焊接学报. 2019(11): 155-160+168 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  858
  • HTML全文浏览量:  23
  • PDF下载量:  17
  • 被引次数: 26
出版历程
  • 收稿日期:  2017-06-25

目录

    /

    返回文章
    返回