基于同轴图像传感的激光焊接过程质量监测技术
Quality monitoring technology of laser welding process based on coaxial image sensing
-
摘要: 针对激光焊接过程中由于参数不匹配、装配误差等原因造成的焊接过程不稳定等焊接缺陷,基于同轴图像传感技术,建立起一套激光焊接过程中的质量在线监测系统,对焊接过程中的熔池图像进行了采集分析及其熔池特征信息的提取. 结果表明,在激光功率为1 500 W的不等厚不锈钢薄板激光焊接试验条件下,焊接过程中的不稳定、下塌缺陷以及焊偏现象与熔池形状各特征信息变化具有一定的相关性. 结合BP神经网络算法对所提特征信息进行分类、识别,基于LabVIEW软件平台,可实现相应缺陷的自动化识别及报警功能.Abstract: Aim at the welding defects, such as instability, due to parameter mismatch and assembly error during welding process, an online system for monitoring quality of laser welding was built based on coaxial image sensing technology to collect, which analyzed and extracted the characterisitic information from the welding pool during laser welding process. Results showed that instability, collapse defect and weld misalignment were associated with the characteristic of the welding pool in the condition of laser welding unequal thickness stainless steel sheet with laser power of 1 500 W. Combining BP neural networks algorithm, the monitoring system can realize the automatic identification and alarm function of the corresponding defects based on LabVIEW platform.
-
-
[1] 陈彦宾. 现代激光焊接技术[M]. 北京: 科学出版社, 2005. [2] 秦国梁, 林尚扬. 激光焊接过程实时监测技术的研究现状及其发展[J]. 焊接学报, 2002, 23(10): 15 ? 20
Qin Guoliang, Lin Shangyang. Study status and development of real-time process monitoring for laser welding[J]. Transactions of the China Welding Institution, 2002, 23(10): 15 ? 20[3] Dorsch F, Braun H, Kessler S, et al. Process sensor systems for laser beam welding[J]. Laser Technik Journal, 2012, 9(3): 24 ? 28. [4] Kamimuki K, Inoue T, Yasuda K, et al. Prevention of welding defect by side gas flow and its monitoring method in continuous wave Nd: YAG laser welding[J]. Journal of Laser Applications, 2002, 14(3): 136 ? 145. [5] Kaierle S, Ungers M, Franz C, et al. Understanding the laser process[J]. Laser Technik Journal, 2010, 7(2): 49 ? 52. [6] Beersiek J. New aspects of monitoring with a CMOS camera for laser materials processing[C]//21st International Congress on Applications of Laser & Electro-optics, Arizona, USA, 2002: 1185–1193. [7] 吴松坪. 激光焊接过程熔透状态实时监测与模式分类[D]. 武汉: 华中科技大学, 2006. [8] 杨永斌. 激光焊接质量实时监测系统研究[D]. 武汉: 华中科技大学, 2004. -
期刊类型引用(6)
1. 苏才津,秦南南,冯哲,张丽. 激光熔覆铁基合金涂层熔覆质量形貌预测. 四川冶金. 2025(01): 16-21 . 百度学术
2. 胡雅楠,余欢,吴圣川,奥妮,阚前华,吴正凯,康国政. 基于机器学习的增材制造合金材料力学性能预测研究进展与挑战. 力学学报. 2024(07): 1892-1915 . 百度学术
3. 惠记庄,骆伟,阎志强,王俊杰,吕景祥,郭许,张浩. AlSi10Mg选区激光熔化表面粗糙度预测、优化及表面形貌分析. 表面技术. 2024(15): 129-140+151 . 百度学术
4. 鲁芬,郁伯铭. 人工神经网络的激光熔覆层特征分析. 激光杂志. 2023(04): 254-258 . 百度学术
5. 穆伟豪,陈雪辉,张雨,黄磊,朱达荣,董必春. 316L不锈钢选区激光熔化表面的形貌分析与粗糙度预测. 激光与光电子学进展. 2022(07): 255-262 . 百度学术
6. 丁宏德,朱春明,唐斌,顾小燕. 316L不锈钢SLM件与锻件的激光焊接头微观组织与性能. 焊接. 2021(05): 9-14+63 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 858
- HTML全文浏览量: 13
- PDF下载量: 36
- 被引次数: 9