高级检索

AgCu+SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响

李淳, 郑祖金, 亓钧雷, 冯吉才, 曹健

李淳, 郑祖金, 亓钧雷, 冯吉才, 曹健. AgCu+SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响[J]. 焊接学报, 2019, 40(12): 11-16. DOI: 10.12073/j.hjxb.2019400002-y
引用本文: 李淳, 郑祖金, 亓钧雷, 冯吉才, 曹健. AgCu+SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响[J]. 焊接学报, 2019, 40(12): 11-16. DOI: 10.12073/j.hjxb.2019400002-y
LI Chun, ZHENG Zujin, QI Junlei, FENG Jicai, CAO Jian. Effect of the SiC content in the Ag-Cu+SiC composite brazing filler on the microstructure and mechanical properties of the Al2O3/TC4 brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 11-16. DOI: 10.12073/j.hjxb.2019400002-y
Citation: LI Chun, ZHENG Zujin, QI Junlei, FENG Jicai, CAO Jian. Effect of the SiC content in the Ag-Cu+SiC composite brazing filler on the microstructure and mechanical properties of the Al2O3/TC4 brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 11-16. DOI: 10.12073/j.hjxb.2019400002-y

AgCu+SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响

基金项目: 国家自然科学基金青年项目(51805114);国家自然科学基金航天联合基金项目(U1737205);国家自然科学基金优秀青年科学基金项目(51622503)

Effect of the SiC content in the Ag-Cu+SiC composite brazing filler on the microstructure and mechanical properties of the Al2O3/TC4 brazing joint

  • 摘要: 采用AgCu+SiC复合钎料钎焊连接了Al2O3陶瓷与TC4钛合金,研究了SiC增强相含量与钎焊温度对接头组织与性能的影响,发现接头的典型组织为Al2O3陶瓷/Ti3Cu3O/Ag基固溶体+Cu基固溶体+TiC+Ti5Si3/TiCu2/TiCu/TC4钛合金. 陶瓷一侧的反应层随着钎焊温度的升高而变厚,随着增强相含量的增加而变薄,当增强相含量较少时,反应产物呈弥散分布,当增强含量较多时,反应产物发生了团聚现象. 钎焊的反应产物随着钎焊温度的升高由团聚分布变为弥散分布. 接头的抗剪强度随着增强相的含量与钎焊温度的升高先增加后降低,当增强相含量为3%(质量分数),钎焊温度为870℃时达到最大,为98 MPa.
    Abstract: The joining between Al2O3 and TC4 titanium alloy was realised using Ag-Cu+SiC composite filler metal. The effects of the mass fraction of SiC and the brazing temperature on microstructure and mechanical properties of the joint were investigated. It was found that the typical microstructure of the joint is Al2O3/Ti3Cu3O/Ag solid solution + Cu solid solution +TiC+Ti5Si3/TiCu2/TiCu/TC4. The thickness of the reaction layer adjacent to the ceramic is increasing with the rising of the temperature and is decreasing with the growing mass fraction of the SiC. For the joint with a small amount of SiC, the reaction products distribute uniformly, while for the joint with a large amount of SiC, the reaction products tends to agglomerate. Reaction products of brazing change from agglomerated distribution to uniform distribution with the increase of brazing temperature. The shear strength of the joint first increases and then decreases with the increase of the brazing temperature and the SiC mass fraction. The highest shear strength of the joint reaches 98 MPa when the mass fraction of the strengthening phase is 3% and the brazing temperature is 870℃.
  • [1] 李飞宾, 吴爱萍, 邹贵生, 等. 高纯氧化铝陶瓷与无氧铜的钎焊[J]. 焊接学报, 2008, 29(3):53-56
    Li Feibin, Wu Aiping, Zou Guisheng, et al. Brazing of high purity alumina with oxygen-free copper[J]. Transactions of the China Welding Institution, 2008, 29(3):53-56
    [2] 范银龙, 夏海洋, 吴爱萍, 等. 离子注入影响高纯氧化铝钎焊性能的研究[J]. 焊接, 2010(7):34-37
    Fan Yinlong, Xia Haiyang, Wu Aiping, et al. Influence of ion implantation on brazing behavior of high purity alumina[J]. Welding & Joining, 2010(7):34-37
    [3] 王义峰. 氧化铝与镍铝合金表面生长晶须及钎焊接头组织与性能[D]. 哈尔滨:哈尔滨工业大学, 2016.
    [4] 朱成俊, 李成思, 董雪花. 采用两种银基活性钎料钎焊AlN陶瓷与可伐合金的接头组织与性能[J]. 焊接学报, 2018, 39(10):15-20
    Zhu Chengjun, Li Chengsi, Dong Xuehua. Microstructure and strength of AlN/Kovar alloy joints brazed with two Ag-based active filler metals[J]. Transactions of the China Welding Institution, 2018, 39(10):15-20
    [5] 逯春阳, 马志鹏, 姜海成, 等. 陶瓷与金属异种材料连接技术研究现状[J]. 焊接, 2018(9):16-19
    Lu Chunyang, Ma Zhipeng, Jiang Haicheng, et al. Research status of joining technology of ceramic to metal[J]. Welding & Joining, 2018(9):16-19
    [6] Song X, Li H, Zeng X, et al. Brazing of C/C composites to Ti6Al4V using graphene nanoplatelets reinforced TiCuZrNi brazing alloy[J]. Materials Letters, 2016, 183:232-235.
    [7] Li C, Si X, Chen L, et al. Non-destructive measurement of residual stress distribution as a function of depth in sapphire/Ti6Al4V brazing joint via Raman spectra[J]. Ceramics International, 2019, 45(3):3284-3289.
    [8] Jing Y, Su D, Yue X, et al. The development of high strength brazing technique for Ti-6Al-4V using TiZrCuNi amorphous filler[J]. Materials Characterization, 2017, 131:526-531.
    [9] Yang Z W, Wang C L, Wang Y, et al. Active metal brazing of SiO2-BN ceramic and Ti plate with Ag-Cu-Ti+BN composite filler[J]. Journal of Materials Science & Technology, 2017, 33(11):1392-1401.
    [10] Xiong H P, Chen B, Pan Y, et al. A Cu-Pd-V system filler alloy for silicon nitride ceramic joining and the interfacial reactions[J]. Journal of the American Ceramic Society, 2014, 97(8):2447-2454.
    [11] Ye D, Xiong W, Zhang X, et al. Microstructure and shear strength of the brazed joint of Ti (C, N)-based cermet to steel[J]. Rare Metals, 2010, 29(1):72-77.
    [12] 王子晨, 曹 健, 代翔宇, 等. Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金[J]. 焊接学报, 2010, 31(1):5-9
    Wang Zichen, Cao Jian, Dai Xiangyu, et al. Brazing ZrO2 ceramic and TC4 alloy using Ag-Cu+WC composite filler[J]. Transactions of the China Welding Institution, 2010, 31(1):5-9
    [13] Ali M, Knowles K M, Mallinson P M, et al. Interfacial reactions between sapphire and Ag-Cu-Ti-based active braze alloys[J]. Acta Materialia, 2016, 103:859-869.
    [14] Kassam T A, Babu N H, Ludford N, et al. Secondary phase interaction at interfaces of high-strength brazed joints made using liquid phase sintered alumina ceramics and Ag-Cu-Ti braze alloys[J]. Scientific Reports, 2018, 8(1):3352.
    [15] Fernandez J M, Asthana R, Singh M, et al. Active metal brazing of silicon nitride ceramics using a Cu-based alloy and refractory metal interlayers[J]. Ceramics International, 2016, 42(4):5447-5454.
    [16] Zhang Y, Zou G, Liu L, et al. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure[J]. Materials Science and Engineering:A, 2016, 662:178-184.
    [17] Xin C, Li N, Yan J. Microstructural evolution in the braze joint of sapphire to Kovar alloy by Ti-Cu metallization layer[J]. Journal of Materials Processing Technology, 2017, 248:115-122.
    [18] Liu W, Wang Z, Ma Y, et al. Investigation of tungsten/steel brazing using Ta and Cu interlayer[J]. Fusion Engineering and Design, 2016, 113:102-108.
    [19] Shen Y, Li Z, Hao C, et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J]. Journal of the European Ceramic Society, 2012, 32(8):1769-1774.
    [20] Zhong Z, Zhou Z, Ge C. Brazing of doped graphite to Cu using stress relief interlayers[J]. Journal of Materials Processing Technology, 2009, 209(5):2662-2670.
    [21] Zhu Y, Qi D, Guo W, et al. The braze joint between Al2O3 to 1Cr18Ni9Ti using a nickel foam[J]. Welding in the World, 2015, 59(4):491-496.
  • 期刊类型引用(9)

    1. 杨雪霞,孙勤润,张伟伟. 基于响应曲面法的BGA焊点结构参数优化设计. 焊接学报. 2023(11): 36-41+131 . 本站查看
    2. 杨雪霞,孙勤润,王超,彭银飞,张伟伟. 基于随机振动过程应力分析的BGA焊点结构优化. 电子学报. 2023(10): 2783-2790 . 百度学术
    3. 邵凤山,何峥纬,刘豪,华腾飞,仇原鹰,李静. 热循环加载下微系统封装结构有限元仿真方法研究. 微电子学与计算机. 2023(11): 121-127 . 百度学术
    4. 李鹏,赵鲁燕. 挠性基板叠装互联结构随机振动模态分析. 电子设计工程. 2022(01): 41-45 . 百度学术
    5. 孙勤润,杨雪霞,刘昭雲,王超,彭银飞. 基于有限元仿真的BGA焊点可靠性分析. 电子器件. 2022(04): 860-865 . 百度学术
    6. 李鹏,潘开林,赵鲁燕. 挠性基板叠装互联组件随机振动响应分析. 电子机械工程. 2021(02): 17-21 . 百度学术
    7. 孙磊,张屹,陈明和,张亮,苗乃明. 3D封装芯片焊点可靠性有限元分析. 焊接学报. 2021(01): 49-53+100 . 本站查看
    8. 李鹏,赵鲁燕,潘开林. 埋置空气隙柔性凸点结构随机振动应力应变分析. 电子元件与材料. 2021(07): 702-709 . 百度学术
    9. 罗宁,陈精一,许庭生. 具有周边硅通孔的晶圆级芯片封装有限元分析. 电子与封装. 2020(04): 15-20 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  363
  • HTML全文浏览量:  6
  • PDF下载量:  75
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-04-03

目录

    /

    返回文章
    返回