Effect of In element on spreadability and micro-interface of Zn15Al5Cu solder
-
摘要: 为获得性能良好的铜铝钎焊用钎料,以Zn15Al5Cu钎料为基体,添加不同质量的In元素,制得Zn15Al5CuxIn(x = 0,1,3,5,x为质量分数)钎料;通过扫描电子显微镜(SEM)、能谱仪(EDS)等分析测试手段,研究了Zn15Al5CuxIn钎料在铝板和铜板上的铺展性以及界面成分变化规律. 结果表明,添加适量的 In元素,可以明显改善Zn15Al5Cu钎料在铜铝两种板上的润湿性;随着In元素添加量的增加,Zn15Al5CuxIn元素钎料在铝板上铺展面积逐渐增大,当 In元素添加量为5%时,Zn15Al5Cu5In 钎料在铝板上铺展面积最大,为251 mm2,较基体钎料提高42.6%;随着In元素添加量增加,Zn15Al5CuxIn元素钎料合金在铜板上铺展面积先增大后降低,当In元素添加量为3%时,Zn15Al5Cu3In钎料在铜板上铺展面积最大,为110 mm2,较基体钎料提高了69%.Abstract: In order to obtain brazing material for copper and aluminum brazing with good performance, Zn15Al5CuxIn (x = 0,1,3,5) brazing material is prepared by adding different quality In. Through scanning electron microscope (SEM), energy disperse spectroscopy (EDS) and other analytical testing methods, the spreadability of Zn15Al5CuxIn solder on Al, Cu plates and the change of interface composition were studied. The results show that the addition of an appropriate amount of In can significantly improve the wettability of Zn15Al5Cu solder on Cu and Al base metals. When the amount of In added is 5%, the Zn15Al5Cu5In solder has the largest spread area on the Al base material, reaching 251 mm2, which is 42.6% higher than that of the base solder; When the In addition amount is 3%, the Zn15Al5Cu3In solder has the largest spread area on the Cu base material, reaching 110 mm2, which is 69% higher than the base solder.
-
-
表 1 合金元素烧损率(%)
Table 1 Burning rate of alloy elements
Zn Al Cu In 2 ~ 5 5 ~ 10 2 ~ 5 2 ~ 5 -
[1] 王泽宇, 赵莹莹, 常东旭, 等. 热处理对Cu/Al-3.25Si合金冷压焊接复合带界面组织与性能的影响[J]. 焊接学报, 2015, 36(11): 81 − 84. Wang Zeyu, Zhao Yingying, Chang Dongxu, et al. Effect of heat treatment on interface microstructure and property of Cu/Al-3.25Si cold-press welded joint[J]. Transactions of the China Welding Institution, 2015, 36(11): 81 − 84.
[2] Zhang G Q, Feng X M, Feng Z Y, et al. Effect of mixed rare earth and Sr on microstructure and brazability of Al-20Cu-5Si-2Ni filler metal[J]. China Welding, 2016, 25(2): 68 − 72.
[3] 王世宇, 李卓然, 张招, 等. Mg/Cu/Al接触反应钎焊工艺及元素扩散行为分析[J]. 焊接学报, 2018, 39(1): 13 − 16. doi: 10.12073/j.hjxb.2018390004 Wang Shiyu, Li Zhuoran, Zhang Zhao, et al. Process and diffusion analysis on contact reactive brazing of Mg/Cu/Al[J]. Transactions of the China Welding Institution, 2018, 39(1): 13 − 16. doi: 10.12073/j.hjxb.2018390004
[4] Bobzin K, Öte M, Wiesner S, et al. Formation of the reaction zone between tin-copper brazing fillers and aluminum silicon-magnesium alloys: Experiments and thermodynamic analysis[J]. Materials Science and Engineering Technology, 2017, 48(12): 1241 − 1248.
[5] Berlanga-Labari C, Albístur-Goñi A, Balerdi-Azpilicueta P, et al. Study and selection of the most appropriate filler materials for an Al/Cu brazing joint in cooling circuits[J]. Materials & Manufacturing Processes, 2011, 26(2): 236 − 241.
[6] Wang X G, Li X G, Yan F J, et al. Effect of heat treatment on the interfacial microstructure and properties of Cu-Al joints[J]. Welding in the World, 2016, 61(1): 1 − 10.
[7] Zhang Q Z, Gong W B, Liu W. Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1779 − 1786. doi: 10.1016/S1003-6326(15)63783-9
[8] 金霞, 杨倡进, 刘保祥. 铝及铝合金用钎剂的发展现状和趋势[J]. 电子工艺技术, 2008, 29(2): 112 − 115. doi: 10.3969/j.issn.1001-3474.2008.02.016 Jin Xia, Yang Changjin, Liu Baoxiang. Development status and trends of flux for aluminum and aluminum alloys[J]. Electronics Process Technology, 2008, 29(2): 112 − 115. doi: 10.3969/j.issn.1001-3474.2008.02.016
[9] 薛松柏, 董健. Al/Cu 管异种材料火焰钎焊连接[J]. 焊接, 2003(12): 23 − 25. doi: 10.3969/j.issn.1001-1382.2003.12.008 Xue Songbai, Dong Jian. Flame brazing connection of Al/Cu tube dissimilar materials[J]. Welding & Joining, 2003(12): 23 − 25. doi: 10.3969/j.issn.1001-1382.2003.12.008
[10] 谢海平, 于大全, 马海涛, 等. Sn-Zn-Cu 无铅钎料的组织、润湿性和力学性能[J]. 中国有色金属学报, 2004, 14(10): 1694 − 1699. doi: 10.3321/j.issn:1004-0609.2004.10.013 Xie Haiping, Yu Daquan, Ma Haitao, et al. Microstructure, wettability and mechanical properties of Sn-Zn-Cu lead-free solder[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(10): 1694 − 1699. doi: 10.3321/j.issn:1004-0609.2004.10.013
[11] 张满, 薛松柏, 姬峰. CuAl2相对铜铝钎焊接头组织与性能的影响[J]. 焊接学报, 2011, 32(2): 93 − 96. Zhang Man, Xue Songbai, Ji Feng. Effect of CuAl2 on the microstructure and properties of copper-aluminum brazed joints[J]. Transactions of the China Welding Institution, 2011, 32(2): 93 − 96.
[12] Ji F, Xue S B, Dai W. Effects of Ti on the brazability of Zn-22Al-xTi filler metals as well as properties of Cu/Al brazing joints[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2453 − 2457. doi: 10.1016/S1875-5372(14)60037-0
[13] Chen R, Huang S S, He Y M. Effect of Sn content on brazing properties of Ag based filler alloy[J]. Material Sciences, 2013, 3(1): 35 − 36. doi: 10.12677/MS.2013.31007
[14] 卢方焱, 薛松柏, 张亮, 等. 微量 In 对 AgCuZn 钎料组织和性能的影响[J]. 焊接学报, 2008, 29(12): 85 − 88. doi: 10.3321/j.issn:0253-360X.2008.12.022 Lu Fangyan, Xue Songbai, Zhang Liang, et al. Effects of trace In on the structure and properties of AgCuZn solders[J]. Transactions of the China Welding Institution, 2008, 29(12): 85 − 88. doi: 10.3321/j.issn:0253-360X.2008.12.022
[15] Young T. An essay on the cohesion of fluids[J]. Proceedings of the Royal Society of London, 1995, 1805(95): 65 − 87.
-
期刊类型引用(2)
1. 陈晨,张亮,王曦,李木兰. Zn-Al系钎焊材料的研究进展. 材料导报. 2023(22): 142-154 . 百度学术
2. 许国栋,闫焉服,高婷婷,李永康. 锡粉粒度对SAC305锡膏黏度和润湿性能的影响. 河南科技大学学报(自然科学版). 2022(06): 12-16+5 . 百度学术
其他类型引用(2)