Effect of CNTs on microstructure and mechanical properties of TC4 and C/C composites brazed joint
-
摘要: 试验采用加入了碳纳米管(carbon nanotubes,CNTs)的AgCu4.5Ti + xCNTs (x为质量分数,%)复合钎料(简称AgCuTiC复合钎料),实现了TC4钛合金与C/C复合材料的真空钎焊连接. 通过SEM,EDS等分析手段确定了在CNTs含量为0.2%、钎焊温度为880 ℃、保温时间为20 min时接头的典型界面组织为TC4/扩散层/Ti2Cu/TiCu/Ti3Cu4/TiCu4/TiC + TiCu2 + Ag(s.s) + Cu(s.s)/Ti3Cu4/TiCu4/TiC/C/C复合材料;研究了CNTs含量对接头组织与性能的影响. 结果表明,随着CNTs含量的增加,钎缝宽度变化呈下降趋势,界面组织细化,界面中的Ti3Cu4与TiCu4脆性化合物的含量降低、TiC与TiCu2化合物的含量增加;接头的抗剪强度呈先上升后下降的趋势变化;当CNTs含量为0.4%时抗剪强度最高,达到44 MPa;CNTs的加入可使界面组织得到细化,有利于缓解钎缝中心区域与两侧母材之间存在的由于热膨胀系数不匹配而形成的较大残余应力,有效地提高了接头的抗剪强度.Abstract: TC4 titanium alloy was brazed to C/C composite by using AgCu4.5Ti+
xCNTs (x represents weight content, %) composite filler with CNTs added (Herein after referred to as AgCuTiC composite filler) metal in vacuum. With the CNTs content was 0.2%, under the condition of 880 ℃/20 min, the typical interfacial microstructure of the brazed joint was TC4/diffusion layer/Ti2Cu/TiCu/Ti3Cu4/TiCu4/TiC+TiCu2+Ag(s.s)+Cu(s.s)/Ti3Cu4/TiCu4/TiC/C/C composites, which was determined by SEM and EDS. The effect of CNTs content on the microstructure and properties of the joint was investigated. The results indicated that with the increase of CNTs content, the width of the brazed joint decreased, the interfacial microstructure refined, the content of brittle Ti3Cu4 and TiCu4 compounds in the interface decreased, the content of TiC and TiCu2 compounds increased,the shear strength of the joint show a trend of increasing first and then decreasing. The maximal shear strength of 44 MPa was obtained with the CNTs content was 0.2%. With the addition of CNTs, the interfacial microstructure can be refined, the residual stress caused by mismatch of the thermal expansion coefficient between the central area of the joint and the substrate materials on both sides can be released, which improves the shear strength of the joint effectively. -
Keywords:
- TC4 titanium alloy /
- C/C composite /
- CNTs /
- brazing /
- shear strength
-
-
图 1 TC4/AgCuTiC /C/C复合材料钎焊接头界面组织及元素分布
Figure 1. Interfacial microstructure and element distribution image of TC4/AgCuTiC/C/C composites brazed joint.(a) morphology of interface; (b) element distribution of Ag; (c) element distribution of Cu; (d) element distribution of Ti; (e) element distribution of Al; (f) element distribution of C
表 1 TC4钛合金的化学成分(质量分数,%)
Table 1 Chemical compositions of TC4 titanium alloy
Al V Ti 其它 6.54 3.83 余量 < 0.2 表 2 TC4和C/C复合材料的物理性能
Table 2 Physical properties of TC4 and C/C composites
材料 密度
ρ/(g·cm−3)弹性模量
E/GPa抗拉强度
Rm/MPaC/C复合材料 1.4 ~ 1.9 69 150 TC4合金 4.5 113 ≥895 位置 Ag Cu Ti C Al V 可能相 A — 8.3 76.5 — 10.8 4.4 Ti(s.s) B — 30.4 60.6 — 5.5 3.5 Ti2Cu C 2.9 47.3 49.8 — — — TiCu D 1 43.8 55.2 — — — Ti3Cu4 E 4.9 68.3 17.4 9.4 — — TiCu4 F 92.7 5.6 2.7 — — — Ag(s.s) G 1.9 55.6 40.4 2.1 — — Ti3Cu4 H 1.77 35.73 28.6 33.9 — — TiC+TiCu2 I 20.4 61.3 18.3 — — — TiCu4 J 3.8 3.7 45.3 47.2 — — TiC -
[1] Qin Y, Feng J. Microstructure and mechanical properties of C/C composite/TC4 joint using AgCuTi filler metal[J]. Materials Science & Engineering A, 2007, 454-455: 322 − 327.
[2] Li J, Liu X, Zhou J. Microstructure and mechanical performances of C/C composite and TC4 alloy brazed joints[J]. Key Engineering Materials, 2012, 512-515: 415 − 420. doi: 10.4028/www.scientific.net/KEM.512-515.415
[3] Dhakate S R, Aoki T, Ogasawara T. High temperature tensile properties of 2D cross-ply carbon-carbon composites[J]. Advanced Materials Letters, 2011, 2(2): 106 − 112. doi: 10.5185/amlett.2010.12189
[4] Song X, Li H, Zeng X. Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiCuZrNi brazing alloy[J]. Journal of Alloys & Compounds, 2016, 664: 175 − 180.
[5] 王子晨, 曹健, 代翔宇, 等. Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金[J]. 焊接学报, 2019, 40(01): 5 − 9. doi: 10.12073/j.hjxb.2019400002 Wang Zichen, Cao Jian, Dai Xiangyu, et al. Brazing ZrO2 ceramic and TC4 alloy using Ag-Cu+WC composite filler[J]. Transactions of the China Welding Institution, 2019, 40(01): 5 − 9. doi: 10.12073/j.hjxb.2019400002
[6] Wang Zeyu, Ba Jin, Qi Junlei, et al. Study and development on the lead-free composite solder[J]. China Welding, 2019, 28(4): 33 − 38.
[7] 秦优琼, 冯吉才, 张丽霞, 等. C/C复合材料与TC4钎焊接头的组织与断裂形式分析[J]. 焊接学报, 2007, 28(03): 13 − 16. doi: 10.3321/j.issn:0253-360X.2007.03.004 Qin Youqiong, Feng Jicai, Zhang Lixia, et al. Microstructure and fracture properties of carbon/carbon composite and TC4 titanium alloy joints[J]. Transactions of the China Welding Institution, 2007, 28(03): 13 − 16. doi: 10.3321/j.issn:0253-360X.2007.03.004
[8] 王晓阳, 曹健, 代翔宇, 等. Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金[J]. 焊接学报, 2019, 40(3): 47 − 51. Wang Xiaoyang, Cao Jian, Dai Xiangyu, et al. Brazing ZTA ceramic to TC4 alloy using Ag-Cu filler metal[J]. Transactions of the China Welding Institution, 2019, 40(3): 47 − 51.
[9] 秦优琼. C/C复合材料与TC4钎焊接头组织及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. Qin Youqiong. Microstructure and properties of brazed joints of C/C composites and TC4[D]. Harbin: Harbin Institute of Technology, 2007.
[10] Ba J, Wang Y, Liu Y, et al. In situ consume excessive Ti element and form fine Ti based compounds as reinforcements for strengthening C/C-TC4 joints[J]. Vacuum, 2017, 143: 303 − 311. doi: 10.1016/j.vacuum.2017.06.035
[11] 王泽宇, 霸金, 马蔷, 等. 纳米材料增强复合钎料的研究进展[J]. 精密成形工程, 2018, 10(1): 82 − 90. doi: 10.3969/j.issn.1674-6457.2018.01.010 Wang Zeyu, Ba jin, Ma Qiang, et al. Research progress on nanomaterial reinforced composite brazing filler[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 82 − 90. doi: 10.3969/j.issn.1674-6457.2018.01.010
[12] 张春红, 张信永, 王世敏, 等. 无铅复合钎料的研究及发展[J]. 机械, 2018, 45(4): 57 − 61. Zhang Chunhong, Zhang Xinyong, Wang Shimin, et al. Study and development on the lead-free composite solder[J]. Machinery, 2018, 45(4): 57 − 61.
[13] Liu D, Song Y, Zhou Y, et al. Brazing of C/C composite and Ti-6Al-4V with graphene strengthened AgCuTi filler: effects of graphene on wettability, microstructure and mechanical properties[J]. Chinese Journal of Aeronautics, 2017, 31(7): 1602 − 1608.
-
期刊类型引用(3)
1. 赵可汗,刘多,朱海涛,陈斌,胡胜鹏,宋晓国. 钎焊温度对C/C/AgCuTi+C_f/TC4接头组织及力学性能的影响. 航空学报. 2022(04): 471-481 . 百度学术
2. 朱强,周佳顶,赵天眸,叶茂成,王泽宇,雷玉成. 垂直取向石墨烯包覆泡沫镍复合中间层钎焊C/C复合材料与Nb的工艺及性能. 焊接学报. 2022(12): 79-83+117-118 . 本站查看
3. 许爱平,侯继军,董俊慧,刘军,王枝梅. 基于响应面法设计的TC4钛合金激光焊复合活性剂优化. 焊接. 2021(10): 15-24+61-62 . 百度学术
其他类型引用(5)