高级检索

焊缝表面缺陷激光扫描三维重构测量

杨鹏程, 高向东, 林少铎, 马波, 潘春荣

杨鹏程, 高向东, 林少铎, 马波, 潘春荣. 焊缝表面缺陷激光扫描三维重构测量[J]. 焊接学报, 2020, 41(3): 59-63. DOI: 10.12073/j.hjxb.20191101001
引用本文: 杨鹏程, 高向东, 林少铎, 马波, 潘春荣. 焊缝表面缺陷激光扫描三维重构测量[J]. 焊接学报, 2020, 41(3): 59-63. DOI: 10.12073/j.hjxb.20191101001
YANG Pengcheng, GAO Xiangdong, Lin Shaoduo, Ma Bo, Pan Chunrong. 3D reconstruction of laser scanning at weld surface defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 59-63. DOI: 10.12073/j.hjxb.20191101001
Citation: YANG Pengcheng, GAO Xiangdong, Lin Shaoduo, Ma Bo, Pan Chunrong. 3D reconstruction of laser scanning at weld surface defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 59-63. DOI: 10.12073/j.hjxb.20191101001

焊缝表面缺陷激光扫描三维重构测量

基金项目: 国家自然科学基金资助项目(51675104);广州市科技计划(202002020068);广东省教育厅创新团队(2017KCXTD010).
详细信息
    作者简介:

    杨鹏程,1991年出生,硕士;主要从事焊接自动控制等方面的研究;Email: 253642845@qq.com

    通讯作者:

    高向东,教授;Email:gaoxd666@126.com.

  • 中图分类号: TG 441.7

3D reconstruction of laser scanning at weld surface defects

  • 摘要: 为检测工件焊缝表面缺陷,采用点激光位移传感测距法和数据拟合技术进行焊缝表面缺陷检测试验研究. 首先采集缺陷表面轮廓数据点,利用高斯滤波对原始数据降噪处理. 再对处理后的数据点进行Delaunay三角剖分,使散乱点连接并结合其空间坐标重构出缺陷的三维模型. 结果表明,基于点激光位移传感测距技术及焊缝表面缺陷三维重构方法可以准确判断焊缝成形情况.
    Abstract: The surface defects of the workpiece weld bead were detected suing a point laser displacement sensing method. Firstly, the data of weld defect surface was collected and the original data was filtered by Gaussian filtering. Then the Delaunay triangulation was applied for the processed data points and reconstruction of a three-dimensional model with the spatial coordinates. Experimental results showed that the 3D reconstruction method based on the point laser displacement sensing and the surface defect images of the weld bead can accurately judge the appearance of welds.
  • 图  1   焊缝表面缺陷检测装置及量块示意图

    Figure  1.   Weld surface defect detection device and block

    图  2   量块10 mm测量轮廓图

    Figure  2.   Outline of 10 mm calibration block

    图  3   焊接缺陷检测系统测量误差图

    Figure  3.   Error of weld defect detection system

    图  4   焊缝扫描信号高斯滤波的基本原理

    Figure  4.   Rationale of gaussian filter for weld scanning signals

    图  5   焊缝凹坑缺陷实物

    Figure  5.   Physical photo of weld pit defect

    图  6   含有凹坑缺陷的单次焊缝扫描横向轮廓图

    Figure  6.   Single weld scanning horizontal profile including pits defects

    图  7   焊缝凹坑缺陷原始数据三维重构图

    Figure  7.   Original 3D reconstruction of the pit defect

    图  8   焊缝凹坑缺陷处理后的三维重构图

    Figure  8.   3D reconstruction image after pit defect processing

    图  9   焊缝咬边缺陷实物图

    Figure  9.   Undercut defect physical map of weld

    图  10   咬边缺陷焊缝二维轮廓图及三维重构图

    Figure  10.   Two-dimensional contour and three-dimensional reconstruction picture of weld with undercut defect. (a) two-dimensional contour of weld with undercut defect; (b) three-dimensional reconstruction picture of weld with undercut defect

    表  1   量块高度测量误差表

    Table  1   Gage block height measurement error table

    序号10 mm 标准值量块
    测量值 h1/mm真实值 h/mm误差 ε/mm
    1 9.962 10 0.038
    2 9.945 10 0.055
    3 9.907 10 0.093
    4 9.946 10 0.054
    5 9.988 10 0.012
    6 10.069 10 –0.069
    7 9.955 10 0.045
    8 10.076 10 –0.076
    9 9.959 10 0.041
    10 9.939 10 0.061
    平均值 $\scriptstyle \bar h $/mm 9.975 10 0.025
    标准偏差σ/mm 0.025
    均方误差 MSE/mm 0.058 4
    下载: 导出CSV
  • [1]

    Qi Jiyang, Li Jinyan. Feature extraction of welding defect based on machine vision[J]. China Welding, 2019, 28(1): 56 − 62.

    [2] 李雪琴, 刘培勇, 殷国富. 基于Fourier拟合曲面的X射线焊缝缺陷检测[J]. 焊接学报, 2014, 35(10): 61 − 64.

    Li Xueqin, Liu Peiyong, Yin Guofu. Detection of X - ray weld defects based on fourier fitting surface[J]. Transactions of the China Welding Institution, 2014, 35(10): 61 − 64.

    [3] 高向东, 郑俏俏, 王春草. 旋转磁场下焊接缺陷磁光成像检测与强分类研究[J]. 机械工程学报, 2019, 55(17): 61 − 67. doi: 10.3901/JME.2019.17.061

    Gao Xiangdong, Zheng Qiaoqiao, Wang Chuncao. Magneto-optical imaging detection and strong classification of weld defects in rotating magnetic fied[J]. Journal of Mechanical Engineering, 2019, 55(17): 61 − 67. doi: 10.3901/JME.2019.17.061

    [4]

    Gao X D, Mo L, Zhong X G, et al. Detection of seam tracking offset based on infrared image during high-power fiber laser welding[J]. Acta Physica Sinica, 2011, 60(8): 298 − 300.

    [5] 方吉米, 王克鸿, 黄勇. 基于透红外视觉传感的GMA-AM熔池图像质量评价[J]. 焊接学报, 2018, 39(12): 89 − 94. doi: 10.12073/j.hjxb.2018390304

    Fang Jimi, Wang Kehong, Huang Yong. Weld pool image quality evaluation of gas metal arc additive manufacturing based on infrared visual sensing[J]. Transactions of the China Welding Institution, 2018, 39(12): 89 − 94. doi: 10.12073/j.hjxb.2018390304

    [6] 董祉序, 孙兴伟, 刘伟军, 等. 基于激光位移传感器的自由曲面精密测量方法[J]. 仪器仪表学报, 2018, 39(12): 30 − 38.

    Dong Zhixu, Sun Xingwei, Liu Weijun, et al. Precision measurement method of free-form curved surfaces based on laser displacement sensor[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 30 − 38.

    [7]

    Graaf M D, Aarts R, Jonker B, et al. Real-time seam tracking for robotic laser welding using trajectory-based control[J]. Control Engineering Practice, 2010, 18(8): 944 − 953. doi: 10.1016/j.conengprac.2010.04.001

    [8] 梁德群, 沈杉, 杨海军. 基于点光源X射线焊缝缺陷深度尺寸的测量[J]. 焊接学报, 2000, 21(3): 5 − 8. doi: 10.3321/j.issn:0253-360X.2000.03.002

    Liang Dequn, Shen Shan, Yang Haijun. Measurement of depth depth of X - ray weld based on point light source[J]. Transactions of the China Welding Institution, 2000, 21(3): 5 − 8. doi: 10.3321/j.issn:0253-360X.2000.03.002

    [9] 莫毅. 基于结构光视觉传感器的弧焊机器人视觉检测方法及试验结果分析[J]. 热加工工艺, 2017(1): 238 − 242.

    Mo Yi. A visual inspection method of arc welding robot based on structured light vision sensor and analysis of experimental results[J]. Processing of Hot Processes, 2017(1): 238 − 242.

    [10]

    Gao Shiyi, Yang Kaizhen, Liu Shitian. Detection of surface defects in laser weld seam based on data fitting[J]. Modern Electronics Technique, 2011, 34(14): 188 − 190.

    [11] 孙俊灵, 孙光民, 马鹏阁, 等. 基于对称小波降噪及非对称高斯拟合的激光目标定位[J]. 中国激光, 2017(6): 178 − 185.

    Sun Junling, Sun Guangmin, Ma Pengge, et al. Laser target localization based on symmetric wavelet denoising and asymmetric gauss fitting[J]. Chinese Journal of Lasers, 2017(6): 178 − 185.

  • 期刊类型引用(9)

    1. 高博轩,赵弘,苗兴园. 基于改进GWO-GRNN的管道焊缝三维重构测量. 机床与液压. 2024(01): 1-10 . 百度学术
    2. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 . 百度学术
    3. 唐昌华,吴琼,时兵,陈坚,李洪亮. 基于压缩感知的激光复合成像超分辨三维重构方法. 激光杂志. 2023(09): 109-113 . 百度学术
    4. 李诺薇,邹维科,种法力. 基于3D激光扫描传感器的焊缝区域跟踪方法设计. 激光与红外. 2023(11): 1650-1656 . 百度学术
    5. 余志,白小亮. 一种石油管内焊缝余高及刮槽深度的测量方法. 石油工业技术监督. 2022(05): 17-19 . 百度学术
    6. 杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 . 本站查看
    7. 马涛,丁克勤,舒安庆,刘亚男. 基于布里渊分布式光纤的储液罐变形场重构方法研究. 压力容器. 2021(04): 11-19 . 百度学术
    8. 胡曦,余震,刘海生. 管道全位置焊缝三维测量研究. 石油机械. 2021(09): 129-136 . 百度学术
    9. 李亮亮,郑世伟,单清群,左玉达. 转向架焊接结构件深度缺陷超声相控阵检测及三维可视化. 焊接. 2021(09): 44-50+64 . 百度学术

    其他类型引用(12)

图(10)  /  表(1)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  49
  • PDF下载量:  38
  • 被引次数: 21
出版历程
  • 收稿日期:  2019-10-31
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回